Properties

Label 2-2320-1.1-c1-0-15
Degree $2$
Conductor $2320$
Sign $1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.66·3-s − 5-s − 3.21·7-s − 0.214·9-s − 5.33·11-s + 4.57·13-s − 1.66·15-s + 4.12·17-s + 6.24·19-s − 5.36·21-s + 8.57·23-s + 25-s − 5.36·27-s − 29-s − 0.123·31-s − 8.90·33-s + 3.21·35-s + 4.42·37-s + 7.64·39-s − 8.42·41-s − 6.12·43-s + 0.214·45-s + 10.6·47-s + 3.33·49-s + 6.88·51-s + 12.3·53-s + 5.33·55-s + ⋯
L(s)  = 1  + 0.963·3-s − 0.447·5-s − 1.21·7-s − 0.0713·9-s − 1.60·11-s + 1.26·13-s − 0.430·15-s + 1.00·17-s + 1.43·19-s − 1.17·21-s + 1.78·23-s + 0.200·25-s − 1.03·27-s − 0.185·29-s − 0.0222·31-s − 1.55·33-s + 0.543·35-s + 0.728·37-s + 1.22·39-s − 1.31·41-s − 0.933·43-s + 0.0319·45-s + 1.55·47-s + 0.475·49-s + 0.963·51-s + 1.69·53-s + 0.719·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.883227332\)
\(L(\frac12)\) \(\approx\) \(1.883227332\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 + T \)
good3 \( 1 - 1.66T + 3T^{2} \)
7 \( 1 + 3.21T + 7T^{2} \)
11 \( 1 + 5.33T + 11T^{2} \)
13 \( 1 - 4.57T + 13T^{2} \)
17 \( 1 - 4.12T + 17T^{2} \)
19 \( 1 - 6.24T + 19T^{2} \)
23 \( 1 - 8.57T + 23T^{2} \)
31 \( 1 + 0.123T + 31T^{2} \)
37 \( 1 - 4.42T + 37T^{2} \)
41 \( 1 + 8.42T + 41T^{2} \)
43 \( 1 + 6.12T + 43T^{2} \)
47 \( 1 - 10.6T + 47T^{2} \)
53 \( 1 - 12.3T + 53T^{2} \)
59 \( 1 - 13.9T + 59T^{2} \)
61 \( 1 + 3.00T + 61T^{2} \)
67 \( 1 - 5.58T + 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 - 0.123T + 73T^{2} \)
79 \( 1 + 12.8T + 79T^{2} \)
83 \( 1 - 2.24T + 83T^{2} \)
89 \( 1 - 5.33T + 89T^{2} \)
97 \( 1 + 0.578T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.866703465591188351439423311054, −8.309960388143332514419635534547, −7.54530272852871370740692503834, −6.92233112995759935924931077904, −5.72750182299157821476192970761, −5.19320440104876536113294931773, −3.64399513893312667199312088593, −3.25779977367364136479971634168, −2.57250761254618309467004292437, −0.838717445333176573837691876508, 0.838717445333176573837691876508, 2.57250761254618309467004292437, 3.25779977367364136479971634168, 3.64399513893312667199312088593, 5.19320440104876536113294931773, 5.72750182299157821476192970761, 6.92233112995759935924931077904, 7.54530272852871370740692503834, 8.309960388143332514419635534547, 8.866703465591188351439423311054

Graph of the $Z$-function along the critical line