Properties

Label 2-2300-5.4-c1-0-28
Degree $2$
Conductor $2300$
Sign $-0.894 + 0.447i$
Analytic cond. $18.3655$
Root an. cond. $4.28550$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.56i·3-s − 2.56i·7-s + 0.561·9-s + 2·11-s − 3.56i·13-s − 2.56i·17-s − 6·19-s − 4·21-s + i·23-s − 5.56i·27-s − 6.12·29-s + 7.24·31-s − 3.12i·33-s + 4.56i·37-s − 5.56·39-s + ⋯
L(s)  = 1  − 0.901i·3-s − 0.968i·7-s + 0.187·9-s + 0.603·11-s − 0.987i·13-s − 0.621i·17-s − 1.37·19-s − 0.872·21-s + 0.208i·23-s − 1.07i·27-s − 1.13·29-s + 1.30·31-s − 0.543i·33-s + 0.749i·37-s − 0.890·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2300\)    =    \(2^{2} \cdot 5^{2} \cdot 23\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(18.3655\)
Root analytic conductor: \(4.28550\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2300} (1749, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2300,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.519273375\)
\(L(\frac12)\) \(\approx\) \(1.519273375\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - iT \)
good3 \( 1 + 1.56iT - 3T^{2} \)
7 \( 1 + 2.56iT - 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 3.56iT - 13T^{2} \)
17 \( 1 + 2.56iT - 17T^{2} \)
19 \( 1 + 6T + 19T^{2} \)
29 \( 1 + 6.12T + 29T^{2} \)
31 \( 1 - 7.24T + 31T^{2} \)
37 \( 1 - 4.56iT - 37T^{2} \)
41 \( 1 - 4.12T + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 4.68iT - 47T^{2} \)
53 \( 1 + 4.56iT - 53T^{2} \)
59 \( 1 - 3.68T + 59T^{2} \)
61 \( 1 + 7.12T + 61T^{2} \)
67 \( 1 - 8.56iT - 67T^{2} \)
71 \( 1 - 10.1T + 71T^{2} \)
73 \( 1 + 4.43iT - 73T^{2} \)
79 \( 1 + 4.87T + 79T^{2} \)
83 \( 1 + 13.9iT - 83T^{2} \)
89 \( 1 + 14.2T + 89T^{2} \)
97 \( 1 - 13.1iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.425794017452273794151957018317, −7.84735525707203661722662645031, −7.06745213933410903875481448899, −6.59907380602805694765537131085, −5.69174898879537983679204803186, −4.54208524705766411609994900361, −3.83383714250876091929595743266, −2.65485863579735171951860026419, −1.51112087306479009439007422655, −0.52818152986298899885087905296, 1.64604722216838827234324406590, 2.62845434297040578089079416770, 4.00428535033584133867341723346, 4.26527282186323017147359551419, 5.34506170508296469213931086513, 6.20157648963508884697311454059, 6.83837185917807805546585086895, 7.983822562655058200323374638573, 8.843496249166157591224255948331, 9.259432319732943686558634576995

Graph of the $Z$-function along the critical line