L(s) = 1 | − 1.56i·3-s − 2.56i·7-s + 0.561·9-s + 2·11-s − 3.56i·13-s − 2.56i·17-s − 6·19-s − 4·21-s + i·23-s − 5.56i·27-s − 6.12·29-s + 7.24·31-s − 3.12i·33-s + 4.56i·37-s − 5.56·39-s + ⋯ |
L(s) = 1 | − 0.901i·3-s − 0.968i·7-s + 0.187·9-s + 0.603·11-s − 0.987i·13-s − 0.621i·17-s − 1.37·19-s − 0.872·21-s + 0.208i·23-s − 1.07i·27-s − 1.13·29-s + 1.30·31-s − 0.543i·33-s + 0.749i·37-s − 0.890·39-s + ⋯ |
Λ(s)=(=(2300s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(2300s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
2300
= 22⋅52⋅23
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
18.3655 |
Root analytic conductor: |
4.28550 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2300(1749,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2300, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.519273375 |
L(21) |
≈ |
1.519273375 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1−iT |
good | 3 | 1+1.56iT−3T2 |
| 7 | 1+2.56iT−7T2 |
| 11 | 1−2T+11T2 |
| 13 | 1+3.56iT−13T2 |
| 17 | 1+2.56iT−17T2 |
| 19 | 1+6T+19T2 |
| 29 | 1+6.12T+29T2 |
| 31 | 1−7.24T+31T2 |
| 37 | 1−4.56iT−37T2 |
| 41 | 1−4.12T+41T2 |
| 43 | 1−43T2 |
| 47 | 1+4.68iT−47T2 |
| 53 | 1+4.56iT−53T2 |
| 59 | 1−3.68T+59T2 |
| 61 | 1+7.12T+61T2 |
| 67 | 1−8.56iT−67T2 |
| 71 | 1−10.1T+71T2 |
| 73 | 1+4.43iT−73T2 |
| 79 | 1+4.87T+79T2 |
| 83 | 1+13.9iT−83T2 |
| 89 | 1+14.2T+89T2 |
| 97 | 1−13.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.425794017452273794151957018317, −7.84735525707203661722662645031, −7.06745213933410903875481448899, −6.59907380602805694765537131085, −5.69174898879537983679204803186, −4.54208524705766411609994900361, −3.83383714250876091929595743266, −2.65485863579735171951860026419, −1.51112087306479009439007422655, −0.52818152986298899885087905296,
1.64604722216838827234324406590, 2.62845434297040578089079416770, 4.00428535033584133867341723346, 4.26527282186323017147359551419, 5.34506170508296469213931086513, 6.20157648963508884697311454059, 6.83837185917807805546585086895, 7.983822562655058200323374638573, 8.843496249166157591224255948331, 9.259432319732943686558634576995