| L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.41 − 1.41i)3-s − 1.00i·4-s + 2.00·6-s + (0.707 + 0.707i)8-s + 3.00i·9-s + (−1.41 + 1.41i)12-s − 1.00·16-s + (−2.12 − 2.12i)18-s + (−0.707 − 0.707i)23-s − 2.00i·24-s + (2.82 − 2.82i)27-s − 2i·29-s + (0.707 − 0.707i)32-s + 3.00·36-s + ⋯ |
| L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.41 − 1.41i)3-s − 1.00i·4-s + 2.00·6-s + (0.707 + 0.707i)8-s + 3.00i·9-s + (−1.41 + 1.41i)12-s − 1.00·16-s + (−2.12 − 2.12i)18-s + (−0.707 − 0.707i)23-s − 2.00i·24-s + (2.82 − 2.82i)27-s − 2i·29-s + (0.707 − 0.707i)32-s + 3.00·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1724705734\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1724705734\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 23 | \( 1 + (0.707 + 0.707i)T \) |
| good | 3 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 29 | \( 1 + 2iT - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + 2T + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.299233342705119670813739282790, −8.055651722830062936910617886791, −7.16167101327055255850819678090, −6.51509640499890077198071800474, −6.04366910315545801900415012159, −5.25879294326373930697219375104, −4.48288889606064715960729081146, −2.35585895802950560395774159947, −1.47212383855488152899696764243, −0.19226412830569124651407128144,
1.43631457912714778588903993710, 3.23151578741895237170178129096, 3.77871023601432759223989320643, 4.77440598202161769190607169355, 5.37650258454064254584537778090, 6.45549004575628318765914825492, 7.11412836527133099617508142819, 8.398454744861584548399529049598, 9.078265243391217089628225127070, 9.818969016751791271621907490846