| L(s) = 1 | + (−0.0871 + 0.996i)2-s + (−0.245 − 0.245i)3-s + (−0.984 − 0.173i)4-s + (0.266 − 0.223i)6-s + (0.258 − 0.965i)8-s − 0.879i·9-s + (0.199 + 0.284i)12-s + (−0.483 + 0.483i)13-s + (0.939 + 0.342i)16-s + (0.876 + 0.0766i)18-s + (−0.707 − 0.707i)23-s + (−0.300 + 0.173i)24-s + (−0.439 − 0.524i)26-s + (−0.461 + 0.461i)27-s − 1.53i·29-s + ⋯ |
| L(s) = 1 | + (−0.0871 + 0.996i)2-s + (−0.245 − 0.245i)3-s + (−0.984 − 0.173i)4-s + (0.266 − 0.223i)6-s + (0.258 − 0.965i)8-s − 0.879i·9-s + (0.199 + 0.284i)12-s + (−0.483 + 0.483i)13-s + (0.939 + 0.342i)16-s + (0.876 + 0.0766i)18-s + (−0.707 − 0.707i)23-s + (−0.300 + 0.173i)24-s + (−0.439 − 0.524i)26-s + (−0.461 + 0.461i)27-s − 1.53i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.874 + 0.485i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.874 + 0.485i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7314760872\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7314760872\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.0871 - 0.996i)T \) |
| 5 | \( 1 \) |
| 23 | \( 1 + (0.707 + 0.707i)T \) |
| good | 3 | \( 1 + (0.245 + 0.245i)T + iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (0.483 - 0.483i)T - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 29 | \( 1 + 1.53iT - T^{2} \) |
| 31 | \( 1 + 1.28iT - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + 0.347T + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-1.32 + 1.32i)T - iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - 1.73T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + 0.684iT - T^{2} \) |
| 73 | \( 1 + (0.909 - 0.909i)T - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.982946856124163444891962426364, −8.300341941238969786745895028152, −7.45702294200861540626771670251, −6.78726605334438017788214858593, −6.11674386415106972314156320919, −5.45605388265775995258976277074, −4.34683090199868934636645577277, −3.76388349950111102000042969354, −2.22463493411257141622054360349, −0.56434950799444421953839733563,
1.41757506899496246008676726682, 2.51118336993937423126920242022, 3.39883447741491177843938119068, 4.41654753645013546431061821356, 5.14232243922328123258508458023, 5.77163854241281162501758484940, 7.15903357374033714241500871828, 7.86681228806563962433651943737, 8.654641436860103970473905463095, 9.390770959748007902445242088097