| L(s) = 1 | + (0.0871 + 0.996i)2-s + (0.245 − 0.245i)3-s + (−0.984 + 0.173i)4-s + (0.266 + 0.223i)6-s + (−0.258 − 0.965i)8-s + 0.879i·9-s + (−0.199 + 0.284i)12-s + (0.483 + 0.483i)13-s + (0.939 − 0.342i)16-s + (−0.876 + 0.0766i)18-s + (0.707 − 0.707i)23-s + (−0.300 − 0.173i)24-s + (−0.439 + 0.524i)26-s + (0.461 + 0.461i)27-s + 1.53i·29-s + ⋯ |
| L(s) = 1 | + (0.0871 + 0.996i)2-s + (0.245 − 0.245i)3-s + (−0.984 + 0.173i)4-s + (0.266 + 0.223i)6-s + (−0.258 − 0.965i)8-s + 0.879i·9-s + (−0.199 + 0.284i)12-s + (0.483 + 0.483i)13-s + (0.939 − 0.342i)16-s + (−0.876 + 0.0766i)18-s + (0.707 − 0.707i)23-s + (−0.300 − 0.173i)24-s + (−0.439 + 0.524i)26-s + (0.461 + 0.461i)27-s + 1.53i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.300 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.300 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.181771388\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.181771388\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.0871 - 0.996i)T \) |
| 5 | \( 1 \) |
| 23 | \( 1 + (-0.707 + 0.707i)T \) |
| good | 3 | \( 1 + (-0.245 + 0.245i)T - iT^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-0.483 - 0.483i)T + iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 29 | \( 1 - 1.53iT - T^{2} \) |
| 31 | \( 1 - 1.28iT - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + 0.347T + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (1.32 + 1.32i)T + iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - 1.73T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 - 0.684iT - T^{2} \) |
| 73 | \( 1 + (-0.909 - 0.909i)T + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.988853253119716451338181021464, −8.594288757578689947463090401443, −7.894830077496204340376970549108, −6.91471067639575834382507388586, −6.66690542628363896970398756472, −5.37037287168359267577607519335, −4.94437507784385905304339739301, −3.89114857218672741722665773690, −2.89388640672522159336280829187, −1.45926989591128924251528870152,
0.859336781691396772559674989693, 2.20463298975037962128310989053, 3.25012301682448155235491259210, 3.83413623762635534060283755700, 4.73888362881599139750990604003, 5.71356596281385633394207763540, 6.44624214524486711640709854303, 7.71466131427883415861330291064, 8.391738339562037883282352058258, 9.213167275217866261841118870453