| L(s) = 1 | − 4i·2-s + 19.5i·3-s − 16·4-s + (−18.7 + 52.6i)5-s + 78.1·6-s − 153. i·7-s + 64i·8-s − 138.·9-s + (210. + 75.0i)10-s + 702.·11-s − 312. i·12-s + 760. i·13-s − 612.·14-s + (−1.02e3 − 366. i)15-s + 256·16-s − 1.46e3i·17-s + ⋯ |
| L(s) = 1 | − 0.707i·2-s + 1.25i·3-s − 0.5·4-s + (−0.335 + 0.942i)5-s + 0.886·6-s − 1.18i·7-s + 0.353i·8-s − 0.570·9-s + (0.666 + 0.237i)10-s + 1.74·11-s − 0.626i·12-s + 1.24i·13-s − 0.834·14-s + (−1.18 − 0.420i)15-s + 0.250·16-s − 1.23i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.335 - 0.942i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.335 - 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(1.897110786\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.897110786\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + 4iT \) |
| 5 | \( 1 + (18.7 - 52.6i)T \) |
| 23 | \( 1 - 529iT \) |
| good | 3 | \( 1 - 19.5iT - 243T^{2} \) |
| 7 | \( 1 + 153. iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 702.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 760. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.46e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 1.89e3T + 2.47e6T^{2} \) |
| 29 | \( 1 - 221.T + 2.05e7T^{2} \) |
| 31 | \( 1 - 2.89e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 705. iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 1.36e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.35e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 2.25e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 3.06e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 1.89e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 1.42e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 1.00e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 1.46e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 5.37e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 6.82e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 2.32e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 3.27e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 5.96e4iT - 8.58e9T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.45767351914476235623722116877, −10.58560891804326724574198024641, −9.638826173942347219825831407487, −9.237934450821046121630777353971, −7.45514957054372413933324848599, −6.55849074789531597437907913510, −4.65132479710868351792863066716, −3.98338611894851939876391525392, −3.16327273993716529181984192378, −1.19464224605983015785606579469,
0.67527849094477873694387710558, 1.72487761413333777473669427602, 3.66815852734666380791537493998, 5.26123024513122625224276402108, 6.10312452862863412955501515953, 7.09777897350363184555628344458, 8.279542758018776389096370729700, 8.659667089382478198948212419915, 9.842775897505826099817259038292, 11.77945016386025535946714440444