Properties

Label 2-230-115.33-c3-0-20
Degree $2$
Conductor $230$
Sign $0.745 + 0.666i$
Analytic cond. $13.5704$
Root an. cond. $3.68380$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.99 − 0.142i)2-s + (−0.143 − 0.661i)3-s + (3.95 + 0.569i)4-s + (10.6 + 3.51i)5-s + (0.192 + 1.33i)6-s + (−7.16 − 13.1i)7-s + (−7.81 − 1.70i)8-s + (24.1 − 11.0i)9-s + (−20.6 − 8.53i)10-s + (24.5 + 21.2i)11-s + (−0.193 − 2.69i)12-s + (−36.6 − 20.0i)13-s + (12.4 + 27.1i)14-s + (0.798 − 7.52i)15-s + (15.3 + 4.50i)16-s + (9.48 − 12.6i)17-s + ⋯
L(s)  = 1  + (−0.705 − 0.0504i)2-s + (−0.0276 − 0.127i)3-s + (0.494 + 0.0711i)4-s + (0.949 + 0.314i)5-s + (0.0131 + 0.0911i)6-s + (−0.386 − 0.708i)7-s + (−0.345 − 0.0751i)8-s + (0.894 − 0.408i)9-s + (−0.653 − 0.269i)10-s + (0.672 + 0.582i)11-s + (−0.00464 − 0.0649i)12-s + (−0.782 − 0.427i)13-s + (0.237 + 0.518i)14-s + (0.0137 − 0.129i)15-s + (0.239 + 0.0704i)16-s + (0.135 − 0.180i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.745 + 0.666i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.745 + 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(230\)    =    \(2 \cdot 5 \cdot 23\)
Sign: $0.745 + 0.666i$
Analytic conductor: \(13.5704\)
Root analytic conductor: \(3.68380\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{230} (33, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 230,\ (\ :3/2),\ 0.745 + 0.666i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.42621 - 0.544244i\)
\(L(\frac12)\) \(\approx\) \(1.42621 - 0.544244i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.99 + 0.142i)T \)
5 \( 1 + (-10.6 - 3.51i)T \)
23 \( 1 + (10.4 - 109. i)T \)
good3 \( 1 + (0.143 + 0.661i)T + (-24.5 + 11.2i)T^{2} \)
7 \( 1 + (7.16 + 13.1i)T + (-185. + 288. i)T^{2} \)
11 \( 1 + (-24.5 - 21.2i)T + (189. + 1.31e3i)T^{2} \)
13 \( 1 + (36.6 + 20.0i)T + (1.18e3 + 1.84e3i)T^{2} \)
17 \( 1 + (-9.48 + 12.6i)T + (-1.38e3 - 4.71e3i)T^{2} \)
19 \( 1 + (-8.10 + 56.3i)T + (-6.58e3 - 1.93e3i)T^{2} \)
29 \( 1 + (-34.0 + 4.89i)T + (2.34e4 - 6.87e3i)T^{2} \)
31 \( 1 + (-79.8 + 51.3i)T + (1.23e4 - 2.70e4i)T^{2} \)
37 \( 1 + (-149. + 399. i)T + (-3.82e4 - 3.31e4i)T^{2} \)
41 \( 1 + (-101. + 222. i)T + (-4.51e4 - 5.20e4i)T^{2} \)
43 \( 1 + (-9.81 + 2.13i)T + (7.23e4 - 3.30e4i)T^{2} \)
47 \( 1 + (-180. + 180. i)T - 1.03e5iT^{2} \)
53 \( 1 + (-612. + 334. i)T + (8.04e4 - 1.25e5i)T^{2} \)
59 \( 1 + (-21.1 - 71.9i)T + (-1.72e5 + 1.11e5i)T^{2} \)
61 \( 1 + (-69.9 - 108. i)T + (-9.42e4 + 2.06e5i)T^{2} \)
67 \( 1 + (65.5 - 916. i)T + (-2.97e5 - 4.28e4i)T^{2} \)
71 \( 1 + (-372. - 429. i)T + (-5.09e4 + 3.54e5i)T^{2} \)
73 \( 1 + (437. - 327. i)T + (1.09e5 - 3.73e5i)T^{2} \)
79 \( 1 + (307. - 90.1i)T + (4.14e5 - 2.66e5i)T^{2} \)
83 \( 1 + (1.27e3 + 475. i)T + (4.32e5 + 3.74e5i)T^{2} \)
89 \( 1 + (-211. - 135. i)T + (2.92e5 + 6.41e5i)T^{2} \)
97 \( 1 + (605. - 225. i)T + (6.89e5 - 5.97e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53215996640052655630989196015, −10.24670408974756517701879002354, −9.858479838684835838044337411912, −9.025811231711836370911838588107, −7.23433122218392814239707240651, −7.03798595158407587241866910722, −5.64725589226196295810098659437, −3.98720867255597743258373739403, −2.35299682551777286075433977658, −0.918180546203569508188224984413, 1.33035378049078469869025023391, 2.64863650272454801899173211828, 4.57490735010140443210279295291, 5.92324124802308828095638452089, 6.72708979278850568275581316204, 8.117558507729193518690799698604, 9.126836678256612666868887624537, 9.811539368367125405310309044991, 10.56226999021794028230504476171, 11.92784889045601166884080944462

Graph of the $Z$-function along the critical line