Properties

Label 2-230-1.1-c5-0-28
Degree $2$
Conductor $230$
Sign $-1$
Analytic cond. $36.8882$
Root an. cond. $6.07357$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 6.88·3-s + 16·4-s + 25·5-s − 27.5·6-s − 45.2·7-s − 64·8-s − 195.·9-s − 100·10-s + 460.·11-s + 110.·12-s + 403.·13-s + 181.·14-s + 172.·15-s + 256·16-s − 2.06e3·17-s + 782.·18-s − 2.21e3·19-s + 400·20-s − 311.·21-s − 1.84e3·22-s + 529·23-s − 440.·24-s + 625·25-s − 1.61e3·26-s − 3.01e3·27-s − 724.·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.441·3-s + 0.5·4-s + 0.447·5-s − 0.312·6-s − 0.349·7-s − 0.353·8-s − 0.805·9-s − 0.316·10-s + 1.14·11-s + 0.220·12-s + 0.662·13-s + 0.246·14-s + 0.197·15-s + 0.250·16-s − 1.73·17-s + 0.569·18-s − 1.40·19-s + 0.223·20-s − 0.154·21-s − 0.811·22-s + 0.208·23-s − 0.156·24-s + 0.200·25-s − 0.468·26-s − 0.797·27-s − 0.174·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(230\)    =    \(2 \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(36.8882\)
Root analytic conductor: \(6.07357\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 230,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
5 \( 1 - 25T \)
23 \( 1 - 529T \)
good3 \( 1 - 6.88T + 243T^{2} \)
7 \( 1 + 45.2T + 1.68e4T^{2} \)
11 \( 1 - 460.T + 1.61e5T^{2} \)
13 \( 1 - 403.T + 3.71e5T^{2} \)
17 \( 1 + 2.06e3T + 1.41e6T^{2} \)
19 \( 1 + 2.21e3T + 2.47e6T^{2} \)
29 \( 1 + 375.T + 2.05e7T^{2} \)
31 \( 1 - 2.97e3T + 2.86e7T^{2} \)
37 \( 1 - 1.09e4T + 6.93e7T^{2} \)
41 \( 1 - 6.68e3T + 1.15e8T^{2} \)
43 \( 1 + 1.67e4T + 1.47e8T^{2} \)
47 \( 1 + 6.38e3T + 2.29e8T^{2} \)
53 \( 1 + 1.69e4T + 4.18e8T^{2} \)
59 \( 1 + 4.48e4T + 7.14e8T^{2} \)
61 \( 1 - 5.70e3T + 8.44e8T^{2} \)
67 \( 1 + 1.00e4T + 1.35e9T^{2} \)
71 \( 1 - 6.93e3T + 1.80e9T^{2} \)
73 \( 1 + 3.62e4T + 2.07e9T^{2} \)
79 \( 1 + 3.25e4T + 3.07e9T^{2} \)
83 \( 1 + 1.11e4T + 3.93e9T^{2} \)
89 \( 1 + 1.22e5T + 5.58e9T^{2} \)
97 \( 1 + 1.21e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89363067258704405854525246153, −9.593074349359755346992978957359, −8.902315202202561352544097061814, −8.247630648277694049544144531411, −6.63927606001474347996440703152, −6.15753435195301283533337661753, −4.29151535494507437137882419567, −2.86323014369633485745373358534, −1.67709566603657981380043793457, 0, 1.67709566603657981380043793457, 2.86323014369633485745373358534, 4.29151535494507437137882419567, 6.15753435195301283533337661753, 6.63927606001474347996440703152, 8.247630648277694049544144531411, 8.902315202202561352544097061814, 9.593074349359755346992978957359, 10.89363067258704405854525246153

Graph of the $Z$-function along the critical line