Properties

Label 2-230-1.1-c5-0-17
Degree $2$
Conductor $230$
Sign $1$
Analytic cond. $36.8882$
Root an. cond. $6.07357$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 7.93·3-s + 16·4-s − 25·5-s + 31.7·6-s + 221.·7-s + 64·8-s − 180.·9-s − 100·10-s + 508.·11-s + 126.·12-s + 148.·13-s + 884.·14-s − 198.·15-s + 256·16-s − 1.62e3·17-s − 720.·18-s + 1.65e3·19-s − 400·20-s + 1.75e3·21-s + 2.03e3·22-s − 529·23-s + 507.·24-s + 625·25-s + 592.·26-s − 3.35e3·27-s + 3.53e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.508·3-s + 0.5·4-s − 0.447·5-s + 0.359·6-s + 1.70·7-s + 0.353·8-s − 0.741·9-s − 0.316·10-s + 1.26·11-s + 0.254·12-s + 0.242·13-s + 1.20·14-s − 0.227·15-s + 0.250·16-s − 1.36·17-s − 0.524·18-s + 1.05·19-s − 0.223·20-s + 0.868·21-s + 0.895·22-s − 0.208·23-s + 0.179·24-s + 0.200·25-s + 0.171·26-s − 0.885·27-s + 0.853·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(230\)    =    \(2 \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(36.8882\)
Root analytic conductor: \(6.07357\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 230,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.397928750\)
\(L(\frac12)\) \(\approx\) \(4.397928750\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
5 \( 1 + 25T \)
23 \( 1 + 529T \)
good3 \( 1 - 7.93T + 243T^{2} \)
7 \( 1 - 221.T + 1.68e4T^{2} \)
11 \( 1 - 508.T + 1.61e5T^{2} \)
13 \( 1 - 148.T + 3.71e5T^{2} \)
17 \( 1 + 1.62e3T + 1.41e6T^{2} \)
19 \( 1 - 1.65e3T + 2.47e6T^{2} \)
29 \( 1 - 6.95e3T + 2.05e7T^{2} \)
31 \( 1 + 813.T + 2.86e7T^{2} \)
37 \( 1 - 1.35e4T + 6.93e7T^{2} \)
41 \( 1 + 7.50e3T + 1.15e8T^{2} \)
43 \( 1 - 8.20e3T + 1.47e8T^{2} \)
47 \( 1 - 4.34e3T + 2.29e8T^{2} \)
53 \( 1 - 3.77e4T + 4.18e8T^{2} \)
59 \( 1 + 3.35e4T + 7.14e8T^{2} \)
61 \( 1 + 2.66e4T + 8.44e8T^{2} \)
67 \( 1 + 1.72e3T + 1.35e9T^{2} \)
71 \( 1 + 3.94e4T + 1.80e9T^{2} \)
73 \( 1 + 5.10e4T + 2.07e9T^{2} \)
79 \( 1 - 6.04e4T + 3.07e9T^{2} \)
83 \( 1 - 4.21e4T + 3.93e9T^{2} \)
89 \( 1 + 8.66e4T + 5.58e9T^{2} \)
97 \( 1 - 1.91e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.60071506600563680744775225441, −10.78715871526769016469161524768, −9.091168768412520960479839894609, −8.344945721753723393249068369878, −7.40136069179618910964275045362, −6.12084670260192579875059010386, −4.81350346114036403866319085927, −3.99011976966611501959124677601, −2.57271126645468812041509919043, −1.24616637375707119729299325130, 1.24616637375707119729299325130, 2.57271126645468812041509919043, 3.99011976966611501959124677601, 4.81350346114036403866319085927, 6.12084670260192579875059010386, 7.40136069179618910964275045362, 8.344945721753723393249068369878, 9.091168768412520960479839894609, 10.78715871526769016469161524768, 11.60071506600563680744775225441

Graph of the $Z$-function along the critical line