L(s) = 1 | − 5.04e4·2-s + 1.97e7·3-s + 1.46e9·4-s − 9.98e11·6-s − 1.98e13·8-s + 1.86e14·9-s + 2.90e16·12-s + 9.69e16·13-s − 5.75e17·16-s − 9.38e18·18-s − 2.66e20·23-s − 3.92e20·24-s + 9.31e20·25-s − 4.88e21·26-s − 3.91e20·27-s − 4.57e21·29-s + 3.15e22·31-s + 5.03e22·32-s + 2.73e23·36-s + 1.91e24·39-s + 3.10e24·41-s + 1.34e25·46-s − 1.77e25·47-s − 1.14e25·48-s + 2.25e25·49-s − 4.69e25·50-s + 1.42e26·52-s + ⋯ |
L(s) = 1 | − 1.53·2-s + 1.37·3-s + 1.36·4-s − 2.12·6-s − 0.563·8-s + 0.904·9-s + 1.88·12-s + 1.89·13-s − 0.499·16-s − 1.39·18-s − 23-s − 0.777·24-s + 25-s − 2.91·26-s − 0.132·27-s − 0.530·29-s + 1.34·31-s + 1.33·32-s + 1.23·36-s + 2.61·39-s + 1.99·41-s + 1.53·46-s − 1.46·47-s − 0.689·48-s + 49-s − 1.53·50-s + 2.58·52-s + ⋯ |
Λ(s)=(=(23s/2ΓC(s)L(s)Λ(31−s)
Λ(s)=(=(23s/2ΓC(s+15)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
23
|
Sign: |
1
|
Analytic conductor: |
131.132 |
Root analytic conductor: |
11.4513 |
Motivic weight: |
30 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ23(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 23, ( :15), 1)
|
Particular Values
L(231) |
≈ |
1.981336616 |
L(21) |
≈ |
1.981336616 |
L(16) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 23 | 1+p15T |
good | 2 | 1+50407T+p30T2 |
| 3 | 1−19799482T+p30T2 |
| 5 | (1−p15T)(1+p15T) |
| 7 | (1−p15T)(1+p15T) |
| 11 | (1−p15T)(1+p15T) |
| 13 | 1−96954465195037082T+p30T2 |
| 17 | (1−p15T)(1+p15T) |
| 19 | (1−p15T)(1+p15T) |
| 29 | 1+45⋯74T+p30T2 |
| 31 | 1−31⋯74T+p30T2 |
| 37 | (1−p15T)(1+p15T) |
| 41 | 1−31⋯74T+p30T2 |
| 43 | (1−p15T)(1+p15T) |
| 47 | 1+17⋯82T+p30T2 |
| 53 | (1−p15T)(1+p15T) |
| 59 | 1−13⋯98T+p30T2 |
| 61 | (1−p15T)(1+p15T) |
| 67 | (1−p15T)(1+p15T) |
| 71 | 1+32⋯26T+p30T2 |
| 73 | 1+50⋯18T+p30T2 |
| 79 | (1−p15T)(1+p15T) |
| 83 | (1−p15T)(1+p15T) |
| 89 | (1−p15T)(1+p15T) |
| 97 | (1−p15T)(1+p15T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.32179138845266023916613259846, −10.20636451449380484021649492062, −9.081666179065423840549007780265, −8.464331808217308924425201463959, −7.65872226315270299905087521141, −6.27255152329906035879746329481, −4.04866669702370114220443149468, −2.82950479287640721629202862451, −1.72565852388529464991066952301, −0.795779337645979707375269002458,
0.795779337645979707375269002458, 1.72565852388529464991066952301, 2.82950479287640721629202862451, 4.04866669702370114220443149468, 6.27255152329906035879746329481, 7.65872226315270299905087521141, 8.464331808217308924425201463959, 9.081666179065423840549007780265, 10.20636451449380484021649492062, 11.32179138845266023916613259846