Properties

Label 2-23-23.22-c18-0-30
Degree $2$
Conductor $23$
Sign $1$
Analytic cond. $47.2388$
Root an. cond. $6.87304$
Motivic weight $18$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.00e3·2-s + 2.82e4·3-s + 7.39e5·4-s + 2.82e7·6-s + 4.78e8·8-s + 4.09e8·9-s + 2.08e10·12-s − 1.44e10·13-s + 2.84e11·16-s + 4.10e11·18-s − 1.80e12·23-s + 1.35e13·24-s + 3.81e12·25-s − 1.44e13·26-s + 6.30e11·27-s − 2.58e13·29-s + 4.63e13·31-s + 1.59e14·32-s + 3.03e14·36-s − 4.06e14·39-s − 5.38e14·41-s − 1.80e15·46-s − 2.01e15·47-s + 8.03e15·48-s + 1.62e15·49-s + 3.81e15·50-s − 1.06e16·52-s + ⋯
L(s)  = 1  + 1.95·2-s + 1.43·3-s + 2.82·4-s + 2.80·6-s + 3.56·8-s + 1.05·9-s + 4.04·12-s − 1.35·13-s + 4.14·16-s + 2.06·18-s − 23-s + 5.11·24-s + 25-s − 2.65·26-s + 0.0826·27-s − 1.77·29-s + 1.75·31-s + 4.53·32-s + 2.98·36-s − 1.94·39-s − 1.64·41-s − 1.95·46-s − 1.80·47-s + 5.94·48-s + 49-s + 1.95·50-s − 3.83·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23\)
Sign: $1$
Analytic conductor: \(47.2388\)
Root analytic conductor: \(6.87304\)
Motivic weight: \(18\)
Rational: yes
Arithmetic: yes
Character: $\chi_{23} (22, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 23,\ (\ :9),\ 1)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(11.67822918\)
\(L(\frac12)\) \(\approx\) \(11.67822918\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 + p^{9} T \)
good2 \( 1 - 1001 T + p^{18} T^{2} \)
3 \( 1 - 28234 T + p^{18} T^{2} \)
5 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
7 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
11 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
13 \( 1 + 14401098646 T + p^{18} T^{2} \)
17 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
19 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
29 \( 1 + 25800611881462 T + p^{18} T^{2} \)
31 \( 1 - 46387544624642 T + p^{18} T^{2} \)
37 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
41 \( 1 + 538722240191278 T + p^{18} T^{2} \)
43 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
47 \( 1 + 2018037720599134 T + p^{18} T^{2} \)
53 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
59 \( 1 - 15758386442415578 T + p^{18} T^{2} \)
61 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
67 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
71 \( 1 - 40558698720275762 T + p^{18} T^{2} \)
73 \( 1 - 51973347295686674 T + p^{18} T^{2} \)
79 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
83 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
89 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
97 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83877100077117935979267215193, −12.88298105588427695720233511801, −11.73368804452336289856193641480, −10.00654669708963870958569000323, −7.986220614631621341268842343611, −6.82422588773599657434278828448, −5.13038915151909024959381179601, −3.88305664283450861490644797012, −2.81275167606681373192316097020, −1.94329165165678285053919402493, 1.94329165165678285053919402493, 2.81275167606681373192316097020, 3.88305664283450861490644797012, 5.13038915151909024959381179601, 6.82422588773599657434278828448, 7.986220614631621341268842343611, 10.00654669708963870958569000323, 11.73368804452336289856193641480, 12.88298105588427695720233511801, 13.83877100077117935979267215193

Graph of the $Z$-function along the critical line