L(s) = 1 | + 1.00e3·2-s + 2.82e4·3-s + 7.39e5·4-s + 2.82e7·6-s + 4.78e8·8-s + 4.09e8·9-s + 2.08e10·12-s − 1.44e10·13-s + 2.84e11·16-s + 4.10e11·18-s − 1.80e12·23-s + 1.35e13·24-s + 3.81e12·25-s − 1.44e13·26-s + 6.30e11·27-s − 2.58e13·29-s + 4.63e13·31-s + 1.59e14·32-s + 3.03e14·36-s − 4.06e14·39-s − 5.38e14·41-s − 1.80e15·46-s − 2.01e15·47-s + 8.03e15·48-s + 1.62e15·49-s + 3.81e15·50-s − 1.06e16·52-s + ⋯ |
L(s) = 1 | + 1.95·2-s + 1.43·3-s + 2.82·4-s + 2.80·6-s + 3.56·8-s + 1.05·9-s + 4.04·12-s − 1.35·13-s + 4.14·16-s + 2.06·18-s − 23-s + 5.11·24-s + 25-s − 2.65·26-s + 0.0826·27-s − 1.77·29-s + 1.75·31-s + 4.53·32-s + 2.98·36-s − 1.94·39-s − 1.64·41-s − 1.95·46-s − 1.80·47-s + 5.94·48-s + 49-s + 1.95·50-s − 3.83·52-s + ⋯ |
Λ(s)=(=(23s/2ΓC(s)L(s)Λ(19−s)
Λ(s)=(=(23s/2ΓC(s+9)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
23
|
Sign: |
1
|
Analytic conductor: |
47.2388 |
Root analytic conductor: |
6.87304 |
Motivic weight: |
18 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ23(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 23, ( :9), 1)
|
Particular Values
L(219) |
≈ |
11.67822918 |
L(21) |
≈ |
11.67822918 |
L(10) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 23 | 1+p9T |
good | 2 | 1−1001T+p18T2 |
| 3 | 1−28234T+p18T2 |
| 5 | (1−p9T)(1+p9T) |
| 7 | (1−p9T)(1+p9T) |
| 11 | (1−p9T)(1+p9T) |
| 13 | 1+14401098646T+p18T2 |
| 17 | (1−p9T)(1+p9T) |
| 19 | (1−p9T)(1+p9T) |
| 29 | 1+25800611881462T+p18T2 |
| 31 | 1−46387544624642T+p18T2 |
| 37 | (1−p9T)(1+p9T) |
| 41 | 1+538722240191278T+p18T2 |
| 43 | (1−p9T)(1+p9T) |
| 47 | 1+2018037720599134T+p18T2 |
| 53 | (1−p9T)(1+p9T) |
| 59 | 1−15758386442415578T+p18T2 |
| 61 | (1−p9T)(1+p9T) |
| 67 | (1−p9T)(1+p9T) |
| 71 | 1−40558698720275762T+p18T2 |
| 73 | 1−51973347295686674T+p18T2 |
| 79 | (1−p9T)(1+p9T) |
| 83 | (1−p9T)(1+p9T) |
| 89 | (1−p9T)(1+p9T) |
| 97 | (1−p9T)(1+p9T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.83877100077117935979267215193, −12.88298105588427695720233511801, −11.73368804452336289856193641480, −10.00654669708963870958569000323, −7.986220614631621341268842343611, −6.82422588773599657434278828448, −5.13038915151909024959381179601, −3.88305664283450861490644797012, −2.81275167606681373192316097020, −1.94329165165678285053919402493,
1.94329165165678285053919402493, 2.81275167606681373192316097020, 3.88305664283450861490644797012, 5.13038915151909024959381179601, 6.82422588773599657434278828448, 7.986220614631621341268842343611, 10.00654669708963870958569000323, 11.73368804452336289856193641480, 12.88298105588427695720233511801, 13.83877100077117935979267215193