Properties

Label 2-2280-2280.1829-c0-0-3
Degree $2$
Conductor $2280$
Sign $-0.135 + 0.990i$
Analytic cond. $1.13786$
Root an. cond. $1.06670$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.342 − 0.939i)2-s + (0.984 + 0.173i)3-s + (−0.766 − 0.642i)4-s + (0.642 − 0.766i)5-s + (0.5 − 0.866i)6-s + (−0.866 + 0.500i)8-s + (0.939 + 0.342i)9-s + (−0.5 − 0.866i)10-s + (−0.642 − 0.766i)12-s + (0.766 − 0.642i)15-s + (0.173 + 0.984i)16-s + (0.642 − 0.233i)17-s + (0.642 − 0.766i)18-s + (0.173 − 0.984i)19-s + (−0.984 + 0.173i)20-s + ⋯
L(s)  = 1  + (0.342 − 0.939i)2-s + (0.984 + 0.173i)3-s + (−0.766 − 0.642i)4-s + (0.642 − 0.766i)5-s + (0.5 − 0.866i)6-s + (−0.866 + 0.500i)8-s + (0.939 + 0.342i)9-s + (−0.5 − 0.866i)10-s + (−0.642 − 0.766i)12-s + (0.766 − 0.642i)15-s + (0.173 + 0.984i)16-s + (0.642 − 0.233i)17-s + (0.642 − 0.766i)18-s + (0.173 − 0.984i)19-s + (−0.984 + 0.173i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.135 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.135 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2280\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 19\)
Sign: $-0.135 + 0.990i$
Analytic conductor: \(1.13786\)
Root analytic conductor: \(1.06670\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2280} (1829, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2280,\ (\ :0),\ -0.135 + 0.990i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.014527942\)
\(L(\frac12)\) \(\approx\) \(2.014527942\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.342 + 0.939i)T \)
3 \( 1 + (-0.984 - 0.173i)T \)
5 \( 1 + (-0.642 + 0.766i)T \)
19 \( 1 + (-0.173 + 0.984i)T \)
good7 \( 1 + (0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.5 - 0.866i)T^{2} \)
13 \( 1 + (-0.939 + 0.342i)T^{2} \)
17 \( 1 + (-0.642 + 0.233i)T + (0.766 - 0.642i)T^{2} \)
23 \( 1 + (1.32 - 1.11i)T + (0.173 - 0.984i)T^{2} \)
29 \( 1 + (0.766 + 0.642i)T^{2} \)
31 \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 + (0.939 + 0.342i)T^{2} \)
43 \( 1 + (0.173 + 0.984i)T^{2} \)
47 \( 1 + (1.20 + 0.439i)T + (0.766 + 0.642i)T^{2} \)
53 \( 1 + (1.20 + 1.43i)T + (-0.173 + 0.984i)T^{2} \)
59 \( 1 + (0.766 - 0.642i)T^{2} \)
61 \( 1 + (-1.11 - 1.32i)T + (-0.173 + 0.984i)T^{2} \)
67 \( 1 + (0.766 + 0.642i)T^{2} \)
71 \( 1 + (-0.173 - 0.984i)T^{2} \)
73 \( 1 + (0.939 + 0.342i)T^{2} \)
79 \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \)
83 \( 1 + (0.300 - 0.173i)T + (0.5 - 0.866i)T^{2} \)
89 \( 1 + (0.939 - 0.342i)T^{2} \)
97 \( 1 + (-0.766 + 0.642i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.196017938413026226871099809862, −8.468085290001510369667822959912, −7.78628887850349812611579672155, −6.55803549169855274447420927501, −5.48662850582566671744276342996, −4.86225396074318520968304213689, −3.98453615536420546778295662661, −3.11892094611407340090595821775, −2.17232644948835708824793541678, −1.30001701315369626549345381725, 1.82091213994270656757821560371, 2.95429011411739803311087343746, 3.66595085629601121890619175268, 4.58011161388562812907183494299, 5.76318929557632289555535863661, 6.35648649860709399585847213702, 7.06786754858570688634196110520, 8.003004378183037988548653624793, 8.237895073150826961097010079632, 9.402191873281453339581759582498

Graph of the $Z$-function along the critical line