L(s) = 1 | + (0.342 − 0.939i)2-s + (0.984 + 0.173i)3-s + (−0.766 − 0.642i)4-s + (0.642 − 0.766i)5-s + (0.5 − 0.866i)6-s + (−0.866 + 0.500i)8-s + (0.939 + 0.342i)9-s + (−0.5 − 0.866i)10-s + (−0.642 − 0.766i)12-s + (0.766 − 0.642i)15-s + (0.173 + 0.984i)16-s + (0.642 − 0.233i)17-s + (0.642 − 0.766i)18-s + (0.173 − 0.984i)19-s + (−0.984 + 0.173i)20-s + ⋯ |
L(s) = 1 | + (0.342 − 0.939i)2-s + (0.984 + 0.173i)3-s + (−0.766 − 0.642i)4-s + (0.642 − 0.766i)5-s + (0.5 − 0.866i)6-s + (−0.866 + 0.500i)8-s + (0.939 + 0.342i)9-s + (−0.5 − 0.866i)10-s + (−0.642 − 0.766i)12-s + (0.766 − 0.642i)15-s + (0.173 + 0.984i)16-s + (0.642 − 0.233i)17-s + (0.642 − 0.766i)18-s + (0.173 − 0.984i)19-s + (−0.984 + 0.173i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.135 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.135 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.014527942\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.014527942\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.342 + 0.939i)T \) |
| 3 | \( 1 + (-0.984 - 0.173i)T \) |
| 5 | \( 1 + (-0.642 + 0.766i)T \) |
| 19 | \( 1 + (-0.173 + 0.984i)T \) |
good | 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (-0.642 + 0.233i)T + (0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (1.32 - 1.11i)T + (0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (1.20 + 0.439i)T + (0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + (1.20 + 1.43i)T + (-0.173 + 0.984i)T^{2} \) |
| 59 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (-1.11 - 1.32i)T + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 73 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 79 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 83 | \( 1 + (0.300 - 0.173i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 97 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.196017938413026226871099809862, −8.468085290001510369667822959912, −7.78628887850349812611579672155, −6.55803549169855274447420927501, −5.48662850582566671744276342996, −4.86225396074318520968304213689, −3.98453615536420546778295662661, −3.11892094611407340090595821775, −2.17232644948835708824793541678, −1.30001701315369626549345381725,
1.82091213994270656757821560371, 2.95429011411739803311087343746, 3.66595085629601121890619175268, 4.58011161388562812907183494299, 5.76318929557632289555535863661, 6.35648649860709399585847213702, 7.06786754858570688634196110520, 8.003004378183037988548653624793, 8.237895073150826961097010079632, 9.402191873281453339581759582498