L(s) = 1 | + (−0.342 + 0.939i)2-s + (−0.984 − 0.173i)3-s + (−0.766 − 0.642i)4-s + (−0.642 + 0.766i)5-s + (0.5 − 0.866i)6-s + (0.866 − 0.500i)8-s + (0.939 + 0.342i)9-s + (−0.5 − 0.866i)10-s + (0.642 + 0.766i)12-s + (0.766 − 0.642i)15-s + (0.173 + 0.984i)16-s + (−0.642 + 0.233i)17-s + (−0.642 + 0.766i)18-s + (0.173 − 0.984i)19-s + (0.984 − 0.173i)20-s + ⋯ |
L(s) = 1 | + (−0.342 + 0.939i)2-s + (−0.984 − 0.173i)3-s + (−0.766 − 0.642i)4-s + (−0.642 + 0.766i)5-s + (0.5 − 0.866i)6-s + (0.866 − 0.500i)8-s + (0.939 + 0.342i)9-s + (−0.5 − 0.866i)10-s + (0.642 + 0.766i)12-s + (0.766 − 0.642i)15-s + (0.173 + 0.984i)16-s + (−0.642 + 0.233i)17-s + (−0.642 + 0.766i)18-s + (0.173 − 0.984i)19-s + (0.984 − 0.173i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.135 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.135 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5506172141\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5506172141\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.342 - 0.939i)T \) |
| 3 | \( 1 + (0.984 + 0.173i)T \) |
| 5 | \( 1 + (0.642 - 0.766i)T \) |
| 19 | \( 1 + (-0.173 + 0.984i)T \) |
good | 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (0.642 - 0.233i)T + (0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (-1.32 + 1.11i)T + (0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (-1.20 - 0.439i)T + (0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + (-1.20 - 1.43i)T + (-0.173 + 0.984i)T^{2} \) |
| 59 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (-1.11 - 1.32i)T + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 73 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 79 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.300 + 0.173i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 97 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.211041453728485636260851089336, −8.519586356809444881415952162990, −7.52015090991106059242046997429, −6.99362298947547794026673109942, −6.49943002221257292372008388277, −5.64539094180390104241866205200, −4.70017586423578490824065918782, −4.12695518296395992249198361501, −2.62536450429777691141114643240, −0.880530865632672690758849659232,
0.73281189529996120359568314187, 1.85073107225216538967555931561, 3.43448618128553185737001462906, 4.08397210589824934295566127570, 4.99498858845023268585657509379, 5.50187008080294982738374100879, 6.85500991071664662358984420489, 7.59153453664560612408907972004, 8.437626555978202224225479488538, 9.204943023469737599548138571853