L(s) = 1 | + (−0.642 − 0.766i)2-s + (0.342 + 0.939i)3-s + (−0.173 + 0.984i)4-s + (0.984 + 0.173i)5-s + (0.5 − 0.866i)6-s + (0.866 − 0.500i)8-s + (−0.766 + 0.642i)9-s + (−0.5 − 0.866i)10-s + (−0.984 + 0.173i)12-s + (0.173 + 0.984i)15-s + (−0.939 − 0.342i)16-s + (0.984 + 0.826i)17-s + (0.984 + 0.173i)18-s + (−0.939 + 0.342i)19-s + (−0.342 + 0.939i)20-s + ⋯ |
L(s) = 1 | + (−0.642 − 0.766i)2-s + (0.342 + 0.939i)3-s + (−0.173 + 0.984i)4-s + (0.984 + 0.173i)5-s + (0.5 − 0.866i)6-s + (0.866 − 0.500i)8-s + (−0.766 + 0.642i)9-s + (−0.5 − 0.866i)10-s + (−0.984 + 0.173i)12-s + (0.173 + 0.984i)15-s + (−0.939 − 0.342i)16-s + (0.984 + 0.826i)17-s + (0.984 + 0.173i)18-s + (−0.939 + 0.342i)19-s + (−0.342 + 0.939i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.631 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.631 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.081056117\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.081056117\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.642 + 0.766i)T \) |
| 3 | \( 1 + (-0.342 - 0.939i)T \) |
| 5 | \( 1 + (-0.984 - 0.173i)T \) |
| 19 | \( 1 + (0.939 - 0.342i)T \) |
good | 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.984 - 0.826i)T + (0.173 + 0.984i)T^{2} \) |
| 23 | \( 1 + (-0.300 - 1.70i)T + (-0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (-1.50 + 1.26i)T + (0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 + (-1.50 + 0.266i)T + (0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 61 | \( 1 + (1.70 - 0.300i)T + (0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (1.62 - 0.939i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.394189941141491746556827913972, −8.899411619025130409460662483090, −8.017558252838368358831132078317, −7.30840491155795763049310355768, −5.98247357297268734688690331671, −5.36775890302401927049241640588, −4.13672973232496654825928420148, −3.51273332602552583877063954181, −2.50000096397175316482267821894, −1.63150958937734320965126229679,
0.929267924244875242946070529563, 2.00331300141033455820329820973, 2.91653912900894262632210356695, 4.59789307412924832142470260084, 5.48313363603407090919791275602, 6.16975221470914983752825812622, 6.88656917680584904783493897365, 7.41915815413447332979391440908, 8.511005590636674063527668626061, 8.815356131474451171448926031926