L(s) = 1 | + (−0.707 − 0.707i)2-s + (0.707 + 0.707i)3-s + 1.00i·4-s + 5-s − 1.00i·6-s + (0.707 − 0.707i)8-s + 1.00i·9-s + (−0.707 − 0.707i)10-s − 2i·11-s + (−0.707 + 0.707i)12-s + 1.41i·13-s + (0.707 + 0.707i)15-s − 1.00·16-s + (0.707 − 0.707i)18-s + 19-s + 1.00i·20-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + (0.707 + 0.707i)3-s + 1.00i·4-s + 5-s − 1.00i·6-s + (0.707 − 0.707i)8-s + 1.00i·9-s + (−0.707 − 0.707i)10-s − 2i·11-s + (−0.707 + 0.707i)12-s + 1.41i·13-s + (0.707 + 0.707i)15-s − 1.00·16-s + (0.707 − 0.707i)18-s + 19-s + 1.00i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.294380973\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.294380973\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 - T \) |
| 19 | \( 1 - T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + 2iT - T^{2} \) |
| 13 | \( 1 - 1.41iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + 1.41iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 2iT - T^{2} \) |
| 67 | \( 1 - 1.41T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + 1.41T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.262456258777500743181124059876, −8.754787518646122551656230817877, −8.064484464735406014734094611762, −7.06951169140951198254663878238, −6.07321128985674711034621694424, −5.13438851989137499580098686019, −4.02912268570098613234240962597, −3.24258286672503804386024599498, −2.46662656194156765670634349321, −1.39257934592051679122159397248,
1.29009019022622477388278236017, 2.09731958829945289077175118154, 3.10005339381804278524581283226, 4.74549606019747834326616667564, 5.40828979053835392298701475311, 6.42780329122891501863328331842, 6.93861258916693822648808197311, 7.77200019795766434385753115491, 8.201721823764818544664508252990, 9.310452363529773999616143584486