Properties

Label 2-2280-2280.1109-c0-0-1
Degree $2$
Conductor $2280$
Sign $0.211 - 0.977i$
Analytic cond. $1.13786$
Root an. cond. $1.06670$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.866 − 0.5i)5-s − 0.999·6-s + 0.999i·8-s + (0.499 − 0.866i)9-s + 0.999·10-s + (−0.866 − 0.499i)12-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.866 + 1.5i)17-s + (0.866 − 0.499i)18-s + (−0.5 − 0.866i)19-s + (0.866 + 0.499i)20-s + ⋯
L(s)  = 1  + (0.866 + 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.866 − 0.5i)5-s − 0.999·6-s + 0.999i·8-s + (0.499 − 0.866i)9-s + 0.999·10-s + (−0.866 − 0.499i)12-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.866 + 1.5i)17-s + (0.866 − 0.499i)18-s + (−0.5 − 0.866i)19-s + (0.866 + 0.499i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2280\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 19\)
Sign: $0.211 - 0.977i$
Analytic conductor: \(1.13786\)
Root analytic conductor: \(1.06670\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2280} (1109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2280,\ (\ :0),\ 0.211 - 0.977i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.774042471\)
\(L(\frac12)\) \(\approx\) \(1.774042471\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 - 0.5i)T \)
3 \( 1 + (0.866 - 0.5i)T \)
5 \( 1 + (-0.866 + 0.5i)T \)
19 \( 1 + (0.5 + 0.866i)T \)
good7 \( 1 - T^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + (-0.5 - 0.866i)T^{2} \)
17 \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \)
23 \( 1 + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (-0.5 - 0.866i)T^{2} \)
31 \( 1 - T + T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 + (0.5 - 0.866i)T^{2} \)
43 \( 1 + (-0.5 + 0.866i)T^{2} \)
47 \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \)
53 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
59 \( 1 + (-0.5 + 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (-0.5 - 0.866i)T^{2} \)
71 \( 1 + (0.5 - 0.866i)T^{2} \)
73 \( 1 + (0.5 - 0.866i)T^{2} \)
79 \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \)
83 \( 1 + iT - T^{2} \)
89 \( 1 + (0.5 + 0.866i)T^{2} \)
97 \( 1 + (0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.354747263134544962177551498890, −8.573740866463665451339579016001, −7.71705056415742749219784075761, −6.53540078169245638222788613244, −6.18977834370952464891421116756, −5.43494509248094314255144732524, −4.72286545630144788416904614252, −4.03567266072414533450796077050, −2.90614963716117129259624192574, −1.54074743823484598366826621367, 1.18422172149806852224167894370, 2.22447534284097963996116158941, 3.09203567950265798436529468877, 4.32365284583573503684432293753, 5.31484899300898869006803502360, 5.67545964713367094889858316050, 6.60875822153382562113891802066, 7.03967287276109728060560561029, 8.058008151809254929352511091828, 9.465002307804211709164337799490

Graph of the $Z$-function along the critical line