L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.866 − 0.5i)5-s − 0.999·6-s + 0.999i·8-s + (0.499 − 0.866i)9-s + 0.999·10-s + (−0.866 − 0.499i)12-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.866 + 1.5i)17-s + (0.866 − 0.499i)18-s + (−0.5 − 0.866i)19-s + (0.866 + 0.499i)20-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.866 − 0.5i)5-s − 0.999·6-s + 0.999i·8-s + (0.499 − 0.866i)9-s + 0.999·10-s + (−0.866 − 0.499i)12-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.866 + 1.5i)17-s + (0.866 − 0.499i)18-s + (−0.5 − 0.866i)19-s + (0.866 + 0.499i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.774042471\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.774042471\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + iT - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.354747263134544962177551498890, −8.573740866463665451339579016001, −7.71705056415742749219784075761, −6.53540078169245638222788613244, −6.18977834370952464891421116756, −5.43494509248094314255144732524, −4.72286545630144788416904614252, −4.03567266072414533450796077050, −2.90614963716117129259624192574, −1.54074743823484598366826621367,
1.18422172149806852224167894370, 2.22447534284097963996116158941, 3.09203567950265798436529468877, 4.32365284583573503684432293753, 5.31484899300898869006803502360, 5.67545964713367094889858316050, 6.60875822153382562113891802066, 7.03967287276109728060560561029, 8.058008151809254929352511091828, 9.465002307804211709164337799490