L(s) = 1 | + (1.41 − 0.0507i)2-s + (0.756 + 1.55i)3-s + (1.99 − 0.143i)4-s + 0.762i·5-s + (1.14 + 2.16i)6-s − 3.87i·7-s + (2.81 − 0.303i)8-s + (−1.85 + 2.35i)9-s + (0.0386 + 1.07i)10-s − 5.11·11-s + (1.73 + 2.99i)12-s − 0.587·13-s + (−0.196 − 5.47i)14-s + (−1.18 + 0.577i)15-s + (3.95 − 0.572i)16-s + 1.64i·17-s + ⋯ |
L(s) = 1 | + (0.999 − 0.0358i)2-s + (0.436 + 0.899i)3-s + (0.997 − 0.0716i)4-s + 0.341i·5-s + (0.468 + 0.883i)6-s − 1.46i·7-s + (0.994 − 0.107i)8-s + (−0.618 + 0.786i)9-s + (0.0122 + 0.340i)10-s − 1.54·11-s + (0.500 + 0.865i)12-s − 0.162·13-s + (−0.0525 − 1.46i)14-s + (−0.306 + 0.149i)15-s + (0.989 − 0.143i)16-s + 0.399i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.865 - 0.500i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.865 - 0.500i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.23081 + 0.598145i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.23081 + 0.598145i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 + 0.0507i)T \) |
| 3 | \( 1 + (-0.756 - 1.55i)T \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 - 0.762iT - 5T^{2} \) |
| 7 | \( 1 + 3.87iT - 7T^{2} \) |
| 11 | \( 1 + 5.11T + 11T^{2} \) |
| 13 | \( 1 + 0.587T + 13T^{2} \) |
| 17 | \( 1 - 1.64iT - 17T^{2} \) |
| 23 | \( 1 + 4.13T + 23T^{2} \) |
| 29 | \( 1 - 0.844iT - 29T^{2} \) |
| 31 | \( 1 + 8.95iT - 31T^{2} \) |
| 37 | \( 1 + 1.82T + 37T^{2} \) |
| 41 | \( 1 + 4.99iT - 41T^{2} \) |
| 43 | \( 1 - 8.79iT - 43T^{2} \) |
| 47 | \( 1 - 10.6T + 47T^{2} \) |
| 53 | \( 1 - 10.3iT - 53T^{2} \) |
| 59 | \( 1 + 7.90T + 59T^{2} \) |
| 61 | \( 1 - 3.61T + 61T^{2} \) |
| 67 | \( 1 + 8.43iT - 67T^{2} \) |
| 71 | \( 1 - 5.12T + 71T^{2} \) |
| 73 | \( 1 + 7.37T + 73T^{2} \) |
| 79 | \( 1 - 13.4iT - 79T^{2} \) |
| 83 | \( 1 - 6.07T + 83T^{2} \) |
| 89 | \( 1 - 9.06iT - 89T^{2} \) |
| 97 | \( 1 + 4.70T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.52104422977892819749721346048, −10.97665989885400598930750805072, −10.63407557024522984428709994480, −9.840886916270173175611470741707, −8.019419662292114713099328532332, −7.35580704939213299867410551518, −5.86170117689759635349646949084, −4.66332078147602917062733229251, −3.79475278999384044807722790740, −2.58293358051079878853889214830,
2.17572411468790641293580597094, 3.04317355608096736650254996871, 5.03553990202619568407168316378, 5.78068422987774288259678035255, 6.99294357228736082390534794176, 8.062021462368124249071549013699, 8.897292053588112032431916230844, 10.42636151535657914800202112000, 11.73141112596829784054339512516, 12.36422194416323201589575680063