L(s) = 1 | + (0.440 + 0.762i)5-s + (0.391 + 2.61i)7-s + (4.83 + 2.79i)11-s − 2.59i·13-s + (2.35 − 4.08i)17-s + (0.537 − 0.310i)19-s + (−3.15 + 1.82i)23-s + (2.11 − 3.65i)25-s − 5.33i·29-s + (9.56 + 5.51i)31-s + (−1.82 + 1.44i)35-s + (4.28 + 7.41i)37-s − 6.82·41-s + 3.65·43-s + (−3.88 − 6.73i)47-s + ⋯ |
L(s) = 1 | + (0.196 + 0.340i)5-s + (0.147 + 0.989i)7-s + (1.45 + 0.841i)11-s − 0.719i·13-s + (0.571 − 0.990i)17-s + (0.123 − 0.0712i)19-s + (−0.658 + 0.380i)23-s + (0.422 − 0.731i)25-s − 0.991i·29-s + (1.71 + 0.991i)31-s + (−0.308 + 0.245i)35-s + (0.703 + 1.21i)37-s − 1.06·41-s + 0.557·43-s + (−0.566 − 0.982i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.697 - 0.716i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.697 - 0.716i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.136732342\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.136732342\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.391 - 2.61i)T \) |
good | 5 | \( 1 + (-0.440 - 0.762i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-4.83 - 2.79i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.59iT - 13T^{2} \) |
| 17 | \( 1 + (-2.35 + 4.08i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.537 + 0.310i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.15 - 1.82i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 5.33iT - 29T^{2} \) |
| 31 | \( 1 + (-9.56 - 5.51i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.28 - 7.41i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6.82T + 41T^{2} \) |
| 43 | \( 1 - 3.65T + 43T^{2} \) |
| 47 | \( 1 + (3.88 + 6.73i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.87 - 3.39i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.35 - 9.27i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.77 - 1.02i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.52 - 7.83i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.3iT - 71T^{2} \) |
| 73 | \( 1 + (3.43 + 1.98i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.01 - 10.4i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3.43T + 83T^{2} \) |
| 89 | \( 1 + (-3.40 - 5.89i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 16.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.152834867377482916746922597980, −8.397471912597402329557474819770, −7.60894318678623202878171432260, −6.63748816621305878033712412937, −6.13685965261042592697992538940, −5.13211892056006394861241422201, −4.38476374952433095779689912019, −3.17950124038955118637772012164, −2.40042852201235007280687109716, −1.18057323948061886956574720879,
0.907960498173570098587119527203, 1.74304498533577112762605676850, 3.35512798038106671432078649753, 4.01959640321523050660937983539, 4.77153347110834542797673400838, 6.01968718738441388075222459263, 6.45208511588654676759236029187, 7.39345477328158455547042476338, 8.219562344550563962353642318225, 8.924905400654074853213422405059