Properties

Label 2-2214-1.1-c1-0-23
Degree $2$
Conductor $2214$
Sign $1$
Analytic cond. $17.6788$
Root an. cond. $4.20462$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4.05·5-s + 2.05·7-s − 8-s − 4.05·10-s + 0.740·11-s + 3.44·13-s − 2.05·14-s + 16-s + 7.31·17-s − 4.91·19-s + 4.05·20-s − 0.740·22-s − 2.65·23-s + 11.4·25-s − 3.44·26-s + 2.05·28-s + 0.948·29-s − 5.65·31-s − 32-s − 7.31·34-s + 8.31·35-s − 1.18·37-s + 4.91·38-s − 4.05·40-s + 41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.81·5-s + 0.775·7-s − 0.353·8-s − 1.28·10-s + 0.223·11-s + 0.956·13-s − 0.548·14-s + 0.250·16-s + 1.77·17-s − 1.12·19-s + 0.905·20-s − 0.157·22-s − 0.553·23-s + 2.28·25-s − 0.676·26-s + 0.387·28-s + 0.176·29-s − 1.01·31-s − 0.176·32-s − 1.25·34-s + 1.40·35-s − 0.195·37-s + 0.797·38-s − 0.640·40-s + 0.156·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2214\)    =    \(2 \cdot 3^{3} \cdot 41\)
Sign: $1$
Analytic conductor: \(17.6788\)
Root analytic conductor: \(4.20462\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2214,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.219164856\)
\(L(\frac12)\) \(\approx\) \(2.219164856\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
41 \( 1 - T \)
good5 \( 1 - 4.05T + 5T^{2} \)
7 \( 1 - 2.05T + 7T^{2} \)
11 \( 1 - 0.740T + 11T^{2} \)
13 \( 1 - 3.44T + 13T^{2} \)
17 \( 1 - 7.31T + 17T^{2} \)
19 \( 1 + 4.91T + 19T^{2} \)
23 \( 1 + 2.65T + 23T^{2} \)
29 \( 1 - 0.948T + 29T^{2} \)
31 \( 1 + 5.65T + 31T^{2} \)
37 \( 1 + 1.18T + 37T^{2} \)
43 \( 1 - 1.31T + 43T^{2} \)
47 \( 1 - 12.4T + 47T^{2} \)
53 \( 1 - 6.44T + 53T^{2} \)
59 \( 1 + 5.31T + 59T^{2} \)
61 \( 1 + 5.70T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 + 5.80T + 71T^{2} \)
73 \( 1 + 1.10T + 73T^{2} \)
79 \( 1 + 9.15T + 79T^{2} \)
83 \( 1 + 10.8T + 83T^{2} \)
89 \( 1 + 1.82T + 89T^{2} \)
97 \( 1 + 18.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.056821413860671093066392262929, −8.477870331135297702991958553129, −7.61848467592575351513414038810, −6.66855942405576256535112617093, −5.78256430640053837135511770292, −5.55100355497214265591328992963, −4.18468886768300388012167518867, −2.89607370947664318474802863065, −1.83414797329564878778212609630, −1.25047667174166953674965707580, 1.25047667174166953674965707580, 1.83414797329564878778212609630, 2.89607370947664318474802863065, 4.18468886768300388012167518867, 5.55100355497214265591328992963, 5.78256430640053837135511770292, 6.66855942405576256535112617093, 7.61848467592575351513414038810, 8.477870331135297702991958553129, 9.056821413860671093066392262929

Graph of the $Z$-function along the critical line