| L(s) = 1 | − 1.26i·2-s + 1.60·3-s + 0.411·4-s + 3.67i·5-s − 2.02i·6-s − 1.74i·7-s − 3.03i·8-s − 0.411·9-s + 4.62·10-s + 1.01i·11-s + 0.661·12-s + (2.85 + 2.19i)13-s − 2.19·14-s + 5.90i·15-s − 3.00·16-s + 17-s + ⋯ |
| L(s) = 1 | − 0.891i·2-s + 0.928·3-s + 0.205·4-s + 1.64i·5-s − 0.827i·6-s − 0.659i·7-s − 1.07i·8-s − 0.137·9-s + 1.46·10-s + 0.306i·11-s + 0.191·12-s + (0.792 + 0.609i)13-s − 0.587·14-s + 1.52i·15-s − 0.752·16-s + 0.242·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.792 + 0.609i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.792 + 0.609i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.63221 - 0.555454i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.63221 - 0.555454i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 + (-2.85 - 2.19i)T \) |
| 17 | \( 1 - T \) |
| good | 2 | \( 1 + 1.26iT - 2T^{2} \) |
| 3 | \( 1 - 1.60T + 3T^{2} \) |
| 5 | \( 1 - 3.67iT - 5T^{2} \) |
| 7 | \( 1 + 1.74iT - 7T^{2} \) |
| 11 | \( 1 - 1.01iT - 11T^{2} \) |
| 19 | \( 1 + 7.06iT - 19T^{2} \) |
| 23 | \( 1 + 8.79T + 23T^{2} \) |
| 29 | \( 1 - 2.10T + 29T^{2} \) |
| 31 | \( 1 + 1.40iT - 31T^{2} \) |
| 37 | \( 1 - 3.67iT - 37T^{2} \) |
| 41 | \( 1 - 11.1iT - 41T^{2} \) |
| 43 | \( 1 + 12.7T + 43T^{2} \) |
| 47 | \( 1 + 3.91iT - 47T^{2} \) |
| 53 | \( 1 - 9.18T + 53T^{2} \) |
| 59 | \( 1 + 2.70iT - 59T^{2} \) |
| 61 | \( 1 - 7.22T + 61T^{2} \) |
| 67 | \( 1 + 3.34iT - 67T^{2} \) |
| 71 | \( 1 - 8.50iT - 71T^{2} \) |
| 73 | \( 1 + 7.15iT - 73T^{2} \) |
| 79 | \( 1 - 7.51T + 79T^{2} \) |
| 83 | \( 1 - 4.63iT - 83T^{2} \) |
| 89 | \( 1 - 10.8iT - 89T^{2} \) |
| 97 | \( 1 + 5.36iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74492350438677865289810191876, −11.25736749592012487535908468119, −10.30541085223735804599129435079, −9.650280766177241907086074045976, −8.204875239092516182903110859286, −7.06574963209846354709031010634, −6.40514834458712987542583470145, −3.97026372980472442228834927424, −3.10094042964455287222840793490, −2.14768034129501570981883970795,
1.97073639985687418739234956017, 3.74499417523636101805344812309, 5.46669570483448309297171937464, 5.93063871581745596280975317227, 7.80447219160625809185023847793, 8.413372090441467035272689032781, 8.814731320400127590363145633387, 10.16754133347510684172093154039, 11.77129546186515181722902660995, 12.38375673918883250992474266812