Properties

Label 2-221-1.1-c1-0-7
Degree $2$
Conductor $221$
Sign $-1$
Analytic cond. $1.76469$
Root an. cond. $1.32841$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·2-s − 2.61·3-s + 0.618·4-s + 2.23·5-s + 4.23·6-s + 0.618·7-s + 2.23·8-s + 3.85·9-s − 3.61·10-s − 4.85·11-s − 1.61·12-s − 13-s − 1.00·14-s − 5.85·15-s − 4.85·16-s − 17-s − 6.23·18-s − 6.85·19-s + 1.38·20-s − 1.61·21-s + 7.85·22-s + 5.23·23-s − 5.85·24-s + 1.61·26-s − 2.23·27-s + 0.381·28-s − 6.23·29-s + ⋯
L(s)  = 1  − 1.14·2-s − 1.51·3-s + 0.309·4-s + 0.999·5-s + 1.72·6-s + 0.233·7-s + 0.790·8-s + 1.28·9-s − 1.14·10-s − 1.46·11-s − 0.467·12-s − 0.277·13-s − 0.267·14-s − 1.51·15-s − 1.21·16-s − 0.242·17-s − 1.46·18-s − 1.57·19-s + 0.309·20-s − 0.353·21-s + 1.67·22-s + 1.09·23-s − 1.19·24-s + 0.317·26-s − 0.430·27-s + 0.0721·28-s − 1.15·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(221\)    =    \(13 \cdot 17\)
Sign: $-1$
Analytic conductor: \(1.76469\)
Root analytic conductor: \(1.32841\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 221,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + T \)
17 \( 1 + T \)
good2 \( 1 + 1.61T + 2T^{2} \)
3 \( 1 + 2.61T + 3T^{2} \)
5 \( 1 - 2.23T + 5T^{2} \)
7 \( 1 - 0.618T + 7T^{2} \)
11 \( 1 + 4.85T + 11T^{2} \)
19 \( 1 + 6.85T + 19T^{2} \)
23 \( 1 - 5.23T + 23T^{2} \)
29 \( 1 + 6.23T + 29T^{2} \)
31 \( 1 + 7T + 31T^{2} \)
37 \( 1 - 0.527T + 37T^{2} \)
41 \( 1 - 6.47T + 41T^{2} \)
43 \( 1 + 11T + 43T^{2} \)
47 \( 1 + 1.23T + 47T^{2} \)
53 \( 1 + 2.61T + 53T^{2} \)
59 \( 1 + 1.76T + 59T^{2} \)
61 \( 1 + 1.85T + 61T^{2} \)
67 \( 1 - 10.1T + 67T^{2} \)
71 \( 1 - 3.52T + 71T^{2} \)
73 \( 1 + 13.9T + 73T^{2} \)
79 \( 1 - 3.47T + 79T^{2} \)
83 \( 1 + 1.76T + 83T^{2} \)
89 \( 1 - 10.8T + 89T^{2} \)
97 \( 1 - 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.25458537692276774911581140601, −10.72408538021514946798233606800, −10.04615398343545307095761689964, −9.046254670461198105102031301030, −7.81929099927458841193439118383, −6.69881262089939985623785387713, −5.55682417528958702711193865772, −4.76726281932362069264088656976, −1.94369802528838451698226347566, 0, 1.94369802528838451698226347566, 4.76726281932362069264088656976, 5.55682417528958702711193865772, 6.69881262089939985623785387713, 7.81929099927458841193439118383, 9.046254670461198105102031301030, 10.04615398343545307095761689964, 10.72408538021514946798233606800, 11.25458537692276774911581140601

Graph of the $Z$-function along the critical line