L(s) = 1 | + 2.56·2-s − 1.43·4-s − 5·5-s − 24.1·8-s − 12.8·10-s + 6.24·11-s + 56.3·13-s − 50.4·16-s − 24.6·17-s + 90.7·19-s + 7.19·20-s + 16·22-s − 69.8·23-s + 25·25-s + 144.·26-s − 228.·29-s + 67.8·31-s + 64.2·32-s − 63.0·34-s − 58.8·37-s + 232.·38-s + 120.·40-s − 19.2·41-s + 365.·43-s − 8.98·44-s − 178.·46-s + 195.·47-s + ⋯ |
L(s) = 1 | + 0.905·2-s − 0.179·4-s − 0.447·5-s − 1.06·8-s − 0.405·10-s + 0.171·11-s + 1.20·13-s − 0.787·16-s − 0.350·17-s + 1.09·19-s + 0.0804·20-s + 0.155·22-s − 0.633·23-s + 0.200·25-s + 1.08·26-s − 1.46·29-s + 0.393·31-s + 0.354·32-s − 0.317·34-s − 0.261·37-s + 0.991·38-s + 0.477·40-s − 0.0731·41-s + 1.29·43-s − 0.0307·44-s − 0.573·46-s + 0.605·47-s + ⋯ |
Λ(s)=(=(2205s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(2205s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+5T |
| 7 | 1 |
good | 2 | 1−2.56T+8T2 |
| 11 | 1−6.24T+1.33e3T2 |
| 13 | 1−56.3T+2.19e3T2 |
| 17 | 1+24.6T+4.91e3T2 |
| 19 | 1−90.7T+6.85e3T2 |
| 23 | 1+69.8T+1.21e4T2 |
| 29 | 1+228.T+2.43e4T2 |
| 31 | 1−67.8T+2.97e4T2 |
| 37 | 1+58.8T+5.06e4T2 |
| 41 | 1+19.2T+6.89e4T2 |
| 43 | 1−365.T+7.95e4T2 |
| 47 | 1−195.T+1.03e5T2 |
| 53 | 1+511.T+1.48e5T2 |
| 59 | 1−284T+2.05e5T2 |
| 61 | 1−123.T+2.26e5T2 |
| 67 | 1−144.T+3.00e5T2 |
| 71 | 1+73.0T+3.57e5T2 |
| 73 | 1+638.T+3.89e5T2 |
| 79 | 1−976.T+4.93e5T2 |
| 83 | 1−484.T+5.71e5T2 |
| 89 | 1+1.01e3T+7.04e5T2 |
| 97 | 1+1.80e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.313986404571865142652630448011, −7.52195641179090705481838590446, −6.52207133860112242905809928598, −5.79689757782884252790490275939, −5.11019922436989186607765222217, −4.03945007081128344518315577254, −3.69724288265100475036162569025, −2.66483754607630004393587062209, −1.23956327088675683827205019265, 0,
1.23956327088675683827205019265, 2.66483754607630004393587062209, 3.69724288265100475036162569025, 4.03945007081128344518315577254, 5.11019922436989186607765222217, 5.79689757782884252790490275939, 6.52207133860112242905809928598, 7.52195641179090705481838590446, 8.313986404571865142652630448011