Properties

Label 2-2205-1.1-c3-0-149
Degree 22
Conductor 22052205
Sign 1-1
Analytic cond. 130.099130.099
Root an. cond. 11.406111.4061
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.53·2-s + 12.5·4-s + 5·5-s − 20.5·8-s − 22.6·10-s + 19.0·11-s + 2.93·13-s − 7.21·16-s − 6.49·17-s + 5.43·19-s + 62.6·20-s − 86.3·22-s − 49.3·23-s + 25·25-s − 13.3·26-s + 291.·29-s − 244.·31-s + 196.·32-s + 29.4·34-s − 193.·37-s − 24.6·38-s − 102.·40-s + 315.·41-s − 300.·43-s + 238.·44-s + 223.·46-s + 86.5·47-s + ⋯
L(s)  = 1  − 1.60·2-s + 1.56·4-s + 0.447·5-s − 0.907·8-s − 0.716·10-s + 0.522·11-s + 0.0626·13-s − 0.112·16-s − 0.0927·17-s + 0.0656·19-s + 0.700·20-s − 0.837·22-s − 0.447·23-s + 0.200·25-s − 0.100·26-s + 1.86·29-s − 1.41·31-s + 1.08·32-s + 0.148·34-s − 0.858·37-s − 0.105·38-s − 0.405·40-s + 1.20·41-s − 1.06·43-s + 0.818·44-s + 0.717·46-s + 0.268·47-s + ⋯

Functional equation

Λ(s)=(2205s/2ΓC(s)L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}
Λ(s)=(2205s/2ΓC(s+3/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 22052205    =    325723^{2} \cdot 5 \cdot 7^{2}
Sign: 1-1
Analytic conductor: 130.099130.099
Root analytic conductor: 11.406111.4061
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 2205, ( :3/2), 1)(2,\ 2205,\ (\ :3/2),\ -1)

Particular Values

L(2)L(2) == 00
L(12)L(\frac12) == 00
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 15T 1 - 5T
7 1 1
good2 1+4.53T+8T2 1 + 4.53T + 8T^{2}
11 119.0T+1.33e3T2 1 - 19.0T + 1.33e3T^{2}
13 12.93T+2.19e3T2 1 - 2.93T + 2.19e3T^{2}
17 1+6.49T+4.91e3T2 1 + 6.49T + 4.91e3T^{2}
19 15.43T+6.85e3T2 1 - 5.43T + 6.85e3T^{2}
23 1+49.3T+1.21e4T2 1 + 49.3T + 1.21e4T^{2}
29 1291.T+2.43e4T2 1 - 291.T + 2.43e4T^{2}
31 1+244.T+2.97e4T2 1 + 244.T + 2.97e4T^{2}
37 1+193.T+5.06e4T2 1 + 193.T + 5.06e4T^{2}
41 1315.T+6.89e4T2 1 - 315.T + 6.89e4T^{2}
43 1+300.T+7.95e4T2 1 + 300.T + 7.95e4T^{2}
47 186.5T+1.03e5T2 1 - 86.5T + 1.03e5T^{2}
53 1+509.T+1.48e5T2 1 + 509.T + 1.48e5T^{2}
59 1+83.3T+2.05e5T2 1 + 83.3T + 2.05e5T^{2}
61 15.25T+2.26e5T2 1 - 5.25T + 2.26e5T^{2}
67 1205.T+3.00e5T2 1 - 205.T + 3.00e5T^{2}
71 1+1.00e3T+3.57e5T2 1 + 1.00e3T + 3.57e5T^{2}
73 11.00e3T+3.89e5T2 1 - 1.00e3T + 3.89e5T^{2}
79 1+863.T+4.93e5T2 1 + 863.T + 4.93e5T^{2}
83 11.33e3T+5.71e5T2 1 - 1.33e3T + 5.71e5T^{2}
89 1326.T+7.04e5T2 1 - 326.T + 7.04e5T^{2}
97 1+1.52e3T+9.12e5T2 1 + 1.52e3T + 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.417399175437126460832182906878, −7.79367836251768885556992224732, −6.86169047475777195792345700455, −6.37518980802705233626552324238, −5.29522120612836792063810024495, −4.19960624411151701113767831248, −2.95031481132222464788993924340, −1.91716945934200517257247153403, −1.13811492539434948809810250831, 0, 1.13811492539434948809810250831, 1.91716945934200517257247153403, 2.95031481132222464788993924340, 4.19960624411151701113767831248, 5.29522120612836792063810024495, 6.37518980802705233626552324238, 6.86169047475777195792345700455, 7.79367836251768885556992224732, 8.417399175437126460832182906878

Graph of the ZZ-function along the critical line