L(s) = 1 | + 1.70·2-s − 5.10·4-s − 5·5-s − 22.2·8-s − 8.50·10-s − 37.4·11-s − 29.0·13-s + 2.89·16-s + 58.4·17-s + 54.5·19-s + 25.5·20-s − 63.6·22-s − 161.·23-s + 25·25-s − 49.3·26-s − 137.·29-s − 154.·31-s + 183.·32-s + 99.4·34-s − 350.·37-s + 92.8·38-s + 111.·40-s + 353.·41-s − 518.·43-s + 190.·44-s − 275.·46-s − 542.·47-s + ⋯ |
L(s) = 1 | + 0.601·2-s − 0.638·4-s − 0.447·5-s − 0.985·8-s − 0.269·10-s − 1.02·11-s − 0.619·13-s + 0.0452·16-s + 0.833·17-s + 0.659·19-s + 0.285·20-s − 0.616·22-s − 1.46·23-s + 0.200·25-s − 0.372·26-s − 0.880·29-s − 0.896·31-s + 1.01·32-s + 0.501·34-s − 1.55·37-s + 0.396·38-s + 0.440·40-s + 1.34·41-s − 1.83·43-s + 0.654·44-s − 0.881·46-s − 1.68·47-s + ⋯ |
Λ(s)=(=(2205s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2205s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.8193963960 |
L(21) |
≈ |
0.8193963960 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+5T |
| 7 | 1 |
good | 2 | 1−1.70T+8T2 |
| 11 | 1+37.4T+1.33e3T2 |
| 13 | 1+29.0T+2.19e3T2 |
| 17 | 1−58.4T+4.91e3T2 |
| 19 | 1−54.5T+6.85e3T2 |
| 23 | 1+161.T+1.21e4T2 |
| 29 | 1+137.T+2.43e4T2 |
| 31 | 1+154.T+2.97e4T2 |
| 37 | 1+350.T+5.06e4T2 |
| 41 | 1−353.T+6.89e4T2 |
| 43 | 1+518.T+7.95e4T2 |
| 47 | 1+542.T+1.03e5T2 |
| 53 | 1+305.T+1.48e5T2 |
| 59 | 1−14.6T+2.05e5T2 |
| 61 | 1−171.T+2.26e5T2 |
| 67 | 1−551.T+3.00e5T2 |
| 71 | 1−120.T+3.57e5T2 |
| 73 | 1+284.T+3.89e5T2 |
| 79 | 1−941.T+4.93e5T2 |
| 83 | 1−377.T+5.71e5T2 |
| 89 | 1+677.T+7.04e5T2 |
| 97 | 1−1.22e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.552390438446042517550388443818, −7.928121915751284233212196480082, −7.28162703920366389412844994007, −6.10789216281293128148667186853, −5.29085316505930329359099282207, −4.85458081491807854820364249910, −3.71303461658186779984528906303, −3.21303841623059107067077121610, −1.94340258328469866153911550303, −0.35838979906258974904439614630,
0.35838979906258974904439614630, 1.94340258328469866153911550303, 3.21303841623059107067077121610, 3.71303461658186779984528906303, 4.85458081491807854820364249910, 5.29085316505930329359099282207, 6.10789216281293128148667186853, 7.28162703920366389412844994007, 7.928121915751284233212196480082, 8.552390438446042517550388443818