Properties

Label 2-2205-1.1-c3-0-113
Degree $2$
Conductor $2205$
Sign $-1$
Analytic cond. $130.099$
Root an. cond. $11.4061$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·2-s + 17·4-s + 5·5-s − 45·8-s − 25·10-s − 12·11-s − 30·13-s + 89·16-s − 134·17-s + 92·19-s + 85·20-s + 60·22-s − 112·23-s + 25·25-s + 150·26-s + 58·29-s + 224·31-s − 85·32-s + 670·34-s − 146·37-s − 460·38-s − 225·40-s + 18·41-s + 340·43-s − 204·44-s + 560·46-s + 208·47-s + ⋯
L(s)  = 1  − 1.76·2-s + 17/8·4-s + 0.447·5-s − 1.98·8-s − 0.790·10-s − 0.328·11-s − 0.640·13-s + 1.39·16-s − 1.91·17-s + 1.11·19-s + 0.950·20-s + 0.581·22-s − 1.01·23-s + 1/5·25-s + 1.13·26-s + 0.371·29-s + 1.29·31-s − 0.469·32-s + 3.37·34-s − 0.648·37-s − 1.96·38-s − 0.889·40-s + 0.0685·41-s + 1.20·43-s − 0.698·44-s + 1.79·46-s + 0.645·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2205\)    =    \(3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(130.099\)
Root analytic conductor: \(11.4061\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2205,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - p T \)
7 \( 1 \)
good2 \( 1 + 5 T + p^{3} T^{2} \)
11 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 + 30 T + p^{3} T^{2} \)
17 \( 1 + 134 T + p^{3} T^{2} \)
19 \( 1 - 92 T + p^{3} T^{2} \)
23 \( 1 + 112 T + p^{3} T^{2} \)
29 \( 1 - 2 p T + p^{3} T^{2} \)
31 \( 1 - 224 T + p^{3} T^{2} \)
37 \( 1 + 146 T + p^{3} T^{2} \)
41 \( 1 - 18 T + p^{3} T^{2} \)
43 \( 1 - 340 T + p^{3} T^{2} \)
47 \( 1 - 208 T + p^{3} T^{2} \)
53 \( 1 - 754 T + p^{3} T^{2} \)
59 \( 1 - 380 T + p^{3} T^{2} \)
61 \( 1 + 718 T + p^{3} T^{2} \)
67 \( 1 - 412 T + p^{3} T^{2} \)
71 \( 1 - 960 T + p^{3} T^{2} \)
73 \( 1 + 1066 T + p^{3} T^{2} \)
79 \( 1 - 896 T + p^{3} T^{2} \)
83 \( 1 - 436 T + p^{3} T^{2} \)
89 \( 1 + 1038 T + p^{3} T^{2} \)
97 \( 1 - 702 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.454518633409177646001690614370, −7.71382454533533323090619164101, −6.97601987220631453432172758318, −6.35940570680834285867658930978, −5.34970623623319497523255948157, −4.22629437241321382356219299771, −2.66196910331395592679785324185, −2.18193678356828036527579923922, −1.00192242183602422735834273132, 0, 1.00192242183602422735834273132, 2.18193678356828036527579923922, 2.66196910331395592679785324185, 4.22629437241321382356219299771, 5.34970623623319497523255948157, 6.35940570680834285867658930978, 6.97601987220631453432172758318, 7.71382454533533323090619164101, 8.454518633409177646001690614370

Graph of the $Z$-function along the critical line