Properties

Label 2-2205-1.1-c1-0-39
Degree $2$
Conductor $2205$
Sign $-1$
Analytic cond. $17.6070$
Root an. cond. $4.19607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·2-s + 3.00·4-s − 5-s − 2.23·8-s + 2.23·10-s + 2.47·11-s + 4.47·13-s − 0.999·16-s − 2·17-s − 6.47·19-s − 3.00·20-s − 5.52·22-s − 4·23-s + 25-s − 10.0·26-s + 2·29-s − 10.4·31-s + 6.70·32-s + 4.47·34-s + 10.9·37-s + 14.4·38-s + 2.23·40-s − 2·41-s − 8.94·43-s + 7.41·44-s + 8.94·46-s − 4.94·47-s + ⋯
L(s)  = 1  − 1.58·2-s + 1.50·4-s − 0.447·5-s − 0.790·8-s + 0.707·10-s + 0.745·11-s + 1.24·13-s − 0.249·16-s − 0.485·17-s − 1.48·19-s − 0.670·20-s − 1.17·22-s − 0.834·23-s + 0.200·25-s − 1.96·26-s + 0.371·29-s − 1.88·31-s + 1.18·32-s + 0.766·34-s + 1.79·37-s + 2.34·38-s + 0.353·40-s − 0.312·41-s − 1.36·43-s + 1.11·44-s + 1.31·46-s − 0.721·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2205\)    =    \(3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(17.6070\)
Root analytic conductor: \(4.19607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2205,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good2 \( 1 + 2.23T + 2T^{2} \)
11 \( 1 - 2.47T + 11T^{2} \)
13 \( 1 - 4.47T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 6.47T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 10.4T + 31T^{2} \)
37 \( 1 - 10.9T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 8.94T + 43T^{2} \)
47 \( 1 + 4.94T + 47T^{2} \)
53 \( 1 - 12.4T + 53T^{2} \)
59 \( 1 - 8.94T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 + 14.4T + 71T^{2} \)
73 \( 1 - 3.52T + 73T^{2} \)
79 \( 1 + 4.94T + 79T^{2} \)
83 \( 1 - 0.944T + 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 - 0.472T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.527262459754565214760602549472, −8.321825935656811848825267409219, −7.26748860243838577988284499505, −6.60844702447583279411046975298, −5.90288449891525962799111143183, −4.40478139629409449802217709687, −3.70179222009514294502738572296, −2.25995413443724394857843608840, −1.32142969098230282350593928673, 0, 1.32142969098230282350593928673, 2.25995413443724394857843608840, 3.70179222009514294502738572296, 4.40478139629409449802217709687, 5.90288449891525962799111143183, 6.60844702447583279411046975298, 7.26748860243838577988284499505, 8.321825935656811848825267409219, 8.527262459754565214760602549472

Graph of the $Z$-function along the critical line