Properties

Label 2-2205-1.1-c1-0-33
Degree $2$
Conductor $2205$
Sign $1$
Analytic cond. $17.6070$
Root an. cond. $4.19607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·2-s + 3.82·4-s − 5-s + 4.41·8-s − 2.41·10-s − 0.828·11-s + 4.82·13-s + 2.99·16-s + 3.65·17-s − 2.82·19-s − 3.82·20-s − 1.99·22-s + 7.65·23-s + 25-s + 11.6·26-s + 8·29-s + 8.48·31-s − 1.58·32-s + 8.82·34-s − 6·37-s − 6.82·38-s − 4.41·40-s − 3.65·41-s − 9.65·43-s − 3.17·44-s + 18.4·46-s + 4·47-s + ⋯
L(s)  = 1  + 1.70·2-s + 1.91·4-s − 0.447·5-s + 1.56·8-s − 0.763·10-s − 0.249·11-s + 1.33·13-s + 0.749·16-s + 0.886·17-s − 0.648·19-s − 0.856·20-s − 0.426·22-s + 1.59·23-s + 0.200·25-s + 2.28·26-s + 1.48·29-s + 1.52·31-s − 0.280·32-s + 1.51·34-s − 0.986·37-s − 1.10·38-s − 0.697·40-s − 0.571·41-s − 1.47·43-s − 0.478·44-s + 2.72·46-s + 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2205\)    =    \(3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(17.6070\)
Root analytic conductor: \(4.19607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2205,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.970089914\)
\(L(\frac12)\) \(\approx\) \(4.970089914\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good2 \( 1 - 2.41T + 2T^{2} \)
11 \( 1 + 0.828T + 11T^{2} \)
13 \( 1 - 4.82T + 13T^{2} \)
17 \( 1 - 3.65T + 17T^{2} \)
19 \( 1 + 2.82T + 19T^{2} \)
23 \( 1 - 7.65T + 23T^{2} \)
29 \( 1 - 8T + 29T^{2} \)
31 \( 1 - 8.48T + 31T^{2} \)
37 \( 1 + 6T + 37T^{2} \)
41 \( 1 + 3.65T + 41T^{2} \)
43 \( 1 + 9.65T + 43T^{2} \)
47 \( 1 - 4T + 47T^{2} \)
53 \( 1 - 10.8T + 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 - 7.31T + 67T^{2} \)
71 \( 1 + 6.48T + 71T^{2} \)
73 \( 1 + 16.1T + 73T^{2} \)
79 \( 1 + 5.65T + 79T^{2} \)
83 \( 1 - 8T + 83T^{2} \)
89 \( 1 + 17.3T + 89T^{2} \)
97 \( 1 - 8.82T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.754125663964176212103119716902, −8.269439050647145101655782950637, −7.07771421492104366693541276644, −6.57463225014792953314705973824, −5.72337611636478613943790620607, −4.96365759228362046422209983298, −4.22997828987748240978002708109, −3.36194828744898197018277608155, −2.76028544630804318875566575926, −1.26057609698056513359560593959, 1.26057609698056513359560593959, 2.76028544630804318875566575926, 3.36194828744898197018277608155, 4.22997828987748240978002708109, 4.96365759228362046422209983298, 5.72337611636478613943790620607, 6.57463225014792953314705973824, 7.07771421492104366693541276644, 8.269439050647145101655782950637, 8.754125663964176212103119716902

Graph of the $Z$-function along the critical line