L(s) = 1 | + (1.23 − 2.13i)2-s + (1.73 − 0.0789i)3-s + (−2.02 − 3.51i)4-s + (−1.29 − 2.24i)5-s + (1.96 − 3.78i)6-s − 5.05·8-s + (2.98 − 0.273i)9-s − 6.38·10-s + (−2.25 + 3.90i)11-s + (−3.78 − 5.91i)12-s + (0.5 + 0.866i)13-s + (−2.42 − 3.78i)15-s + (−2.16 + 3.74i)16-s + 0.945·17-s + (3.09 − 6.70i)18-s + 4.05·19-s + ⋯ |
L(s) = 1 | + (0.869 − 1.50i)2-s + (0.998 − 0.0455i)3-s + (−1.01 − 1.75i)4-s + (−0.579 − 1.00i)5-s + (0.800 − 1.54i)6-s − 1.78·8-s + (0.995 − 0.0910i)9-s − 2.01·10-s + (−0.680 + 1.17i)11-s + (−1.09 − 1.70i)12-s + (0.138 + 0.240i)13-s + (−0.625 − 0.977i)15-s + (−0.540 + 0.936i)16-s + 0.229·17-s + (0.729 − 1.57i)18-s + 0.930·19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(−0.904+0.426i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(−0.904+0.426i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
−0.904+0.426i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(295,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), −0.904+0.426i)
|
Particular Values
L(1) |
≈ |
0.557773−2.49305i |
L(21) |
≈ |
0.557773−2.49305i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.73+0.0789i)T |
| 7 | 1 |
good | 2 | 1+(−1.23+2.13i)T+(−1−1.73i)T2 |
| 5 | 1+(1.29+2.24i)T+(−2.5+4.33i)T2 |
| 11 | 1+(2.25−3.90i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.5−0.866i)T+(−6.5+11.2i)T2 |
| 17 | 1−0.945T+17T2 |
| 19 | 1−4.05T+19T2 |
| 23 | 1+(−0.136−0.236i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.23−2.13i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−1.16−2.01i)T+(−15.5+26.8i)T2 |
| 37 | 1−1.78T+37T2 |
| 41 | 1+(3.20+5.54i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−5.21+9.03i)T+(−21.5−37.2i)T2 |
| 47 | 1+(6.08−10.5i)T+(−23.5−40.7i)T2 |
| 53 | 1+6.27T+53T2 |
| 59 | 1+(1.36+2.36i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.13−1.96i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−7.90−13.6i)T+(−33.5+58.0i)T2 |
| 71 | 1−3.27T+71T2 |
| 73 | 1−1.50T+73T2 |
| 79 | 1+(7.35−12.7i)T+(−39.5−68.4i)T2 |
| 83 | 1+(0.472−0.819i)T+(−41.5−71.8i)T2 |
| 89 | 1−14.3T+89T2 |
| 97 | 1+(5.74−9.95i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.82909712009613245853448781677, −9.874436438657939238131871876322, −9.274138496809550614731158313637, −8.205276121267667167765027338139, −7.21849051213467371328397707365, −5.26602796065890056232445390093, −4.52668515029490494701086907385, −3.67382935062646437201913784312, −2.51461064959421322489554493286, −1.31601575231585731486460766373,
3.03253701240543513256816078408, 3.55713903744432719498868437644, 4.84132637571162115249113343366, 6.01344381641018650133733615465, 6.92830592506145766567673822144, 7.903645497640902363766965248304, 8.083128643324261488469836137875, 9.383435735684464530577169794374, 10.60299509757934506711681876132, 11.62783807590467910419495333404