L(s) = 1 | + (4 − 6.92i)4-s − 70·13-s + (−31.9 − 55.4i)16-s + (−28 − 48.4i)19-s + (62.5 − 108. i)25-s + (−154 + 266. i)31-s + (−55 − 95.2i)37-s − 520·43-s + (−280 + 484. i)52-s + (−91 − 157. i)61-s − 511.·64-s + (440 − 762. i)67-s + (−595 + 1.03e3i)73-s − 448·76-s + (−442 − 765. i)79-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)4-s − 1.49·13-s + (−0.499 − 0.866i)16-s + (−0.338 − 0.585i)19-s + (0.5 − 0.866i)25-s + (−0.892 + 1.54i)31-s + (−0.244 − 0.423i)37-s − 1.84·43-s + (−0.746 + 1.29i)52-s + (−0.191 − 0.330i)61-s − 0.999·64-s + (0.802 − 1.38i)67-s + (−0.953 + 1.65i)73-s − 0.676·76-s + (−0.629 − 1.09i)79-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(−0.991+0.126i)Λ(4−s)
Λ(s)=(=(441s/2ΓC(s+3/2)L(s)(−0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
−0.991+0.126i
|
Analytic conductor: |
26.0198 |
Root analytic conductor: |
5.10096 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :3/2), −0.991+0.126i)
|
Particular Values
L(2) |
≈ |
0.7386172822 |
L(21) |
≈ |
0.7386172822 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+(−4+6.92i)T2 |
| 5 | 1+(−62.5+108.i)T2 |
| 11 | 1+(−665.5−1.15e3i)T2 |
| 13 | 1+70T+2.19e3T2 |
| 17 | 1+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(28+48.4i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(−6.08e3+1.05e4i)T2 |
| 29 | 1+2.43e4T2 |
| 31 | 1+(154−266.i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(55+95.2i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+6.89e4T2 |
| 43 | 1+520T+7.95e4T2 |
| 47 | 1+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(91+157.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−440+762.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+3.57e5T2 |
| 73 | 1+(595−1.03e3i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(442+765.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+5.71e5T2 |
| 89 | 1+(−3.52e5+6.10e5i)T2 |
| 97 | 1+1.33e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27956083209803175970728823408, −9.567272421880884948901266038398, −8.529049672316125847966618328334, −7.22313989641582163104713892595, −6.64668630759271982649604512118, −5.39489699364415509355371136752, −4.65829605843546070449210196188, −2.92776921553246232766972661783, −1.80493315745799743006436770142, −0.21407224702063321874449893990,
1.94842047405757395210193268107, 3.05964471367929791532014632990, 4.20949255296742531605535240181, 5.41828436421701897590208947581, 6.70967973899054809091711450815, 7.45779498421284055779773259075, 8.251388036442077242208349159031, 9.332757193244271912365143230436, 10.25081169568286480137101051612, 11.30453194257185347936891286881