Properties

Label 2-21e2-7.4-c3-0-25
Degree $2$
Conductor $441$
Sign $-0.991 + 0.126i$
Analytic cond. $26.0198$
Root an. cond. $5.10096$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.17 − 3.77i)2-s + (−5.5 + 9.52i)4-s + (−4.35 − 7.54i)5-s + 13.0·8-s + (−19 + 32.9i)10-s + (21.7 − 37.7i)11-s + 82·13-s + (15.4 + 26.8i)16-s + (39.2 − 67.9i)17-s + (10 + 17.3i)19-s + 95.8·20-s − 190·22-s + (65.3 + 113. i)23-s + (24.5 − 42.4i)25-s + (−178. − 309. i)26-s + ⋯
L(s)  = 1  + (−0.770 − 1.33i)2-s + (−0.687 + 1.19i)4-s + (−0.389 − 0.675i)5-s + 0.577·8-s + (−0.600 + 1.04i)10-s + (0.597 − 1.03i)11-s + 1.74·13-s + (0.242 + 0.419i)16-s + (0.559 − 0.969i)17-s + (0.120 + 0.209i)19-s + 1.07·20-s − 1.84·22-s + (0.592 + 1.02i)23-s + (0.196 − 0.339i)25-s + (−1.34 − 2.33i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $-0.991 + 0.126i$
Analytic conductor: \(26.0198\)
Root analytic conductor: \(5.10096\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{441} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :3/2),\ -0.991 + 0.126i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.211391351\)
\(L(\frac12)\) \(\approx\) \(1.211391351\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + (2.17 + 3.77i)T + (-4 + 6.92i)T^{2} \)
5 \( 1 + (4.35 + 7.54i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (-21.7 + 37.7i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 - 82T + 2.19e3T^{2} \)
17 \( 1 + (-39.2 + 67.9i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (-10 - 17.3i)T + (-3.42e3 + 5.94e3i)T^{2} \)
23 \( 1 + (-65.3 - 113. i)T + (-6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 - 244.T + 2.43e4T^{2} \)
31 \( 1 + (78 - 135. i)T + (-1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + (93 + 161. i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 + 165.T + 6.89e4T^{2} \)
43 \( 1 - 164T + 7.95e4T^{2} \)
47 \( 1 + (235. + 407. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (-78.4 + 135. i)T + (-7.44e4 - 1.28e5i)T^{2} \)
59 \( 1 + (78.4 - 135. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (395 + 684. i)T + (-1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (-22 + 38.1i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 - 444.T + 3.57e5T^{2} \)
73 \( 1 + (63 - 109. i)T + (-1.94e5 - 3.36e5i)T^{2} \)
79 \( 1 + (-356 - 616. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + 1.46e3T + 5.71e5T^{2} \)
89 \( 1 + (-727. - 1.26e3i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 - 798T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42817263085347557263283250948, −9.313849683214081046333999974151, −8.699568455652785833637778261219, −8.112737745633846757126492647300, −6.55820020896357741908156028801, −5.32616702437604258227520314024, −3.80779913016288870499181617590, −3.14305005065303859085076511527, −1.37840826886658875057442099131, −0.66990451374232947092039446573, 1.20311353026688041507781994523, 3.23683773719698926479807349488, 4.53292754729179105222149203450, 6.01173958692304985015283803229, 6.59019401071679902935456369969, 7.41022030818004945805399211349, 8.342231990467772331353500019356, 8.983784923540511161259725178517, 10.08094168079757910936461715019, 10.84914827614573738487195643905

Graph of the $Z$-function along the critical line