L(s) = 1 | + (−1.50 − 0.588i)2-s + (0.437 + 0.406i)4-s + (3.18 + 2.16i)5-s + (2.37 − 1.17i)7-s + (0.980 + 2.03i)8-s + (−3.49 − 5.12i)10-s + (0.655 + 4.34i)11-s + (−3.43 + 2.74i)13-s + (−4.24 + 0.363i)14-s + (−0.361 − 4.82i)16-s + (−3.21 − 0.992i)17-s + (−0.776 + 0.448i)19-s + (0.511 + 2.24i)20-s + (1.57 − 6.90i)22-s + (0.732 + 2.37i)23-s + ⋯ |
L(s) = 1 | + (−1.06 − 0.416i)2-s + (0.218 + 0.203i)4-s + (1.42 + 0.969i)5-s + (0.896 − 0.443i)7-s + (0.346 + 0.720i)8-s + (−1.10 − 1.62i)10-s + (0.197 + 1.31i)11-s + (−0.953 + 0.760i)13-s + (−1.13 + 0.0972i)14-s + (−0.0903 − 1.20i)16-s + (−0.780 − 0.240i)17-s + (−0.178 + 0.102i)19-s + (0.114 + 0.501i)20-s + (0.336 − 1.47i)22-s + (0.152 + 0.494i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.952888 + 0.284974i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.952888 + 0.284974i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-2.37 + 1.17i)T \) |
good | 2 | \( 1 + (1.50 + 0.588i)T + (1.46 + 1.36i)T^{2} \) |
| 5 | \( 1 + (-3.18 - 2.16i)T + (1.82 + 4.65i)T^{2} \) |
| 11 | \( 1 + (-0.655 - 4.34i)T + (-10.5 + 3.24i)T^{2} \) |
| 13 | \( 1 + (3.43 - 2.74i)T + (2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + (3.21 + 0.992i)T + (14.0 + 9.57i)T^{2} \) |
| 19 | \( 1 + (0.776 - 0.448i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.732 - 2.37i)T + (-19.0 + 12.9i)T^{2} \) |
| 29 | \( 1 + (8.30 - 1.89i)T + (26.1 - 12.5i)T^{2} \) |
| 31 | \( 1 + (-4.67 - 2.69i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.45 + 5.06i)T + (2.76 - 36.8i)T^{2} \) |
| 41 | \( 1 + (-5.36 + 2.58i)T + (25.5 - 32.0i)T^{2} \) |
| 43 | \( 1 + (2.54 + 1.22i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (1.55 - 3.96i)T + (-34.4 - 31.9i)T^{2} \) |
| 53 | \( 1 + (-8.87 + 9.56i)T + (-3.96 - 52.8i)T^{2} \) |
| 59 | \( 1 + (-6.88 + 4.69i)T + (21.5 - 54.9i)T^{2} \) |
| 61 | \( 1 + (-2.93 - 3.16i)T + (-4.55 + 60.8i)T^{2} \) |
| 67 | \( 1 + (1.42 - 2.47i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.30 + 1.66i)T + (63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (-3.88 + 1.52i)T + (53.5 - 49.6i)T^{2} \) |
| 79 | \( 1 + (1.80 + 3.13i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (8.34 - 10.4i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (-3.95 - 0.596i)T + (85.0 + 26.2i)T^{2} \) |
| 97 | \( 1 + 18.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.98572928816062519793803296834, −10.04669196009713991807252386280, −9.681388231436279651226745567714, −8.849049418025631307339354194338, −7.42259290606299978979778705126, −6.95208987227082883698694217973, −5.48498352186373044109521167456, −4.47635707182275895052085329942, −2.30674251236716495062356461537, −1.79114620577558063139652045921,
0.945262493500513239254153817102, 2.35911685236855409266612434957, 4.45541330039144966759117094083, 5.52425527019791060598063331995, 6.29742704198094118004937759388, 7.73813245443839690273319575897, 8.530644790014727412656651889911, 9.047118450442800986630551332261, 9.845056484428919296784223237874, 10.71255864690019793111553901821