L(s) = 1 | − 2·4-s + 7·13-s + 4·16-s + 7·19-s − 5·25-s + 7·31-s − 37-s + 5·43-s − 14·52-s − 14·61-s − 8·64-s + 11·67-s + 7·73-s − 14·76-s − 13·79-s − 14·97-s + 10·100-s + 7·103-s + 17·109-s + ⋯ |
L(s) = 1 | − 4-s + 1.94·13-s + 16-s + 1.60·19-s − 25-s + 1.25·31-s − 0.164·37-s + 0.762·43-s − 1.94·52-s − 1.79·61-s − 64-s + 1.34·67-s + 0.819·73-s − 1.60·76-s − 1.46·79-s − 1.42·97-s + 100-s + 0.689·103-s + 1.62·109-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.209177364 |
L(21) |
≈ |
1.209177364 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+pT2 |
| 5 | 1+pT2 |
| 11 | 1+pT2 |
| 13 | 1−7T+pT2 |
| 17 | 1+pT2 |
| 19 | 1−7T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+pT2 |
| 31 | 1−7T+pT2 |
| 37 | 1+T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−5T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+pT2 |
| 59 | 1+pT2 |
| 61 | 1+14T+pT2 |
| 67 | 1−11T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−7T+pT2 |
| 79 | 1+13T+pT2 |
| 83 | 1+pT2 |
| 89 | 1+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.12611090306175738214534717990, −10.09209954751813487013591320496, −9.291988044548486732019479222726, −8.461373500657640359204806994178, −7.67458414128501773545216406647, −6.24141795466275696941914757951, −5.40791154265456502263047742620, −4.19234808180063134723072414533, −3.28050491254919886424015350098, −1.14668647924786773157165026874,
1.14668647924786773157165026874, 3.28050491254919886424015350098, 4.19234808180063134723072414533, 5.40791154265456502263047742620, 6.24141795466275696941914757951, 7.67458414128501773545216406647, 8.461373500657640359204806994178, 9.291988044548486732019479222726, 10.09209954751813487013591320496, 11.12611090306175738214534717990