# Properties

 Label 2-21e2-1.1-c1-0-11 Degree $2$ Conductor $441$ Sign $1$ Analytic cond. $3.52140$ Root an. cond. $1.87654$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual yes Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + 2.64·2-s + 5.00·4-s + 7.93·8-s − 5.29·11-s + 11.0·16-s − 14.0·22-s + 5.29·23-s − 5·25-s − 10.5·29-s + 13.2·32-s + 6·37-s + 12·43-s − 26.4·44-s + 14.0·46-s − 13.2·50-s − 10.5·53-s − 28.0·58-s + 13.0·64-s + 4·67-s − 5.29·71-s + 15.8·74-s + 8·79-s + 31.7·86-s − 42.0·88-s + 26.4·92-s − 25.0·100-s − 28.0·106-s + ⋯
 L(s)  = 1 + 1.87·2-s + 2.50·4-s + 2.80·8-s − 1.59·11-s + 2.75·16-s − 2.98·22-s + 1.10·23-s − 25-s − 1.96·29-s + 2.33·32-s + 0.986·37-s + 1.82·43-s − 3.98·44-s + 2.06·46-s − 1.87·50-s − 1.45·53-s − 3.67·58-s + 1.62·64-s + 0.488·67-s − 0.627·71-s + 1.84·74-s + 0.900·79-s + 3.42·86-s − 4.47·88-s + 2.75·92-s − 2.50·100-s − 2.71·106-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$441$$    =    $$3^{2} \cdot 7^{2}$$ Sign: $1$ Analytic conductor: $$3.52140$$ Root analytic conductor: $$1.87654$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: Trivial Primitive: yes Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(2,\ 441,\ (\ :1/2),\ 1)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$3.847825175$$ $$L(\frac12)$$ $$\approx$$ $$3.847825175$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1$$
7 $$1$$
good2 $$1 - 2.64T + 2T^{2}$$
5 $$1 + 5T^{2}$$
11 $$1 + 5.29T + 11T^{2}$$
13 $$1 + 13T^{2}$$
17 $$1 + 17T^{2}$$
19 $$1 + 19T^{2}$$
23 $$1 - 5.29T + 23T^{2}$$
29 $$1 + 10.5T + 29T^{2}$$
31 $$1 + 31T^{2}$$
37 $$1 - 6T + 37T^{2}$$
41 $$1 + 41T^{2}$$
43 $$1 - 12T + 43T^{2}$$
47 $$1 + 47T^{2}$$
53 $$1 + 10.5T + 53T^{2}$$
59 $$1 + 59T^{2}$$
61 $$1 + 61T^{2}$$
67 $$1 - 4T + 67T^{2}$$
71 $$1 + 5.29T + 71T^{2}$$
73 $$1 + 73T^{2}$$
79 $$1 - 8T + 79T^{2}$$
83 $$1 + 83T^{2}$$
89 $$1 + 89T^{2}$$
97 $$1 + 97T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−11.17895832286995930823270705118, −10.82216115514045736533181030394, −9.535213828304778577885788498129, −7.87819863379023890748178489750, −7.24600568074370316077773975368, −5.97076295085884490558763280650, −5.34158610926627434786098273374, −4.36693795227291559219296206399, −3.21673288771012501952651827597, −2.20191138215244987282741431171, 2.20191138215244987282741431171, 3.21673288771012501952651827597, 4.36693795227291559219296206399, 5.34158610926627434786098273374, 5.97076295085884490558763280650, 7.24600568074370316077773975368, 7.87819863379023890748178489750, 9.535213828304778577885788498129, 10.82216115514045736533181030394, 11.17895832286995930823270705118