Properties

Label 2-2178-33.32-c1-0-12
Degree $2$
Conductor $2178$
Sign $-0.870 - 0.492i$
Analytic cond. $17.3914$
Root an. cond. $4.17030$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2.82i·5-s + 4.24i·7-s − 8-s − 2.82i·10-s + 5.65i·13-s − 4.24i·14-s + 16-s + 4·17-s + 5.65i·19-s + 2.82i·20-s − 1.41i·23-s − 3.00·25-s − 5.65i·26-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.26i·5-s + 1.60i·7-s − 0.353·8-s − 0.894i·10-s + 1.56i·13-s − 1.13i·14-s + 0.250·16-s + 0.970·17-s + 1.29i·19-s + 0.632i·20-s − 0.294i·23-s − 0.600·25-s − 1.10i·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2178 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.870 - 0.492i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2178 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.870 - 0.492i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2178\)    =    \(2 \cdot 3^{2} \cdot 11^{2}\)
Sign: $-0.870 - 0.492i$
Analytic conductor: \(17.3914\)
Root analytic conductor: \(4.17030\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2178} (2177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2178,\ (\ :1/2),\ -0.870 - 0.492i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.298914858\)
\(L(\frac12)\) \(\approx\) \(1.298914858\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 - 2.82iT - 5T^{2} \)
7 \( 1 - 4.24iT - 7T^{2} \)
13 \( 1 - 5.65iT - 13T^{2} \)
17 \( 1 - 4T + 17T^{2} \)
19 \( 1 - 5.65iT - 19T^{2} \)
23 \( 1 + 1.41iT - 23T^{2} \)
29 \( 1 - 10T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 8.48iT - 43T^{2} \)
47 \( 1 + 1.41iT - 47T^{2} \)
53 \( 1 + 2.82iT - 53T^{2} \)
59 \( 1 - 14.1iT - 59T^{2} \)
61 \( 1 + 8.48iT - 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 + 12.7iT - 71T^{2} \)
73 \( 1 - 1.41iT - 73T^{2} \)
79 \( 1 + 7.07iT - 79T^{2} \)
83 \( 1 + 8T + 83T^{2} \)
89 \( 1 + 18.3iT - 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.464720148285383274395083211133, −8.591719854503404647973526606440, −7.994022171981303662318707903022, −7.03432867991204954792087472939, −6.28591626832989856474494922376, −5.86058063485458486945352480239, −4.56586817801460336750958268308, −3.25212140046988975363211780834, −2.56905041531577077988028504277, −1.64879463858937532460343046813, 0.76326666849079354093271603211, 0.981928877622687933044407594463, 2.76071446101906306769807303111, 3.81068719113730444364575991074, 4.79266877933545202269196340713, 5.45735686938429888370837138293, 6.61932953362489900343342617688, 7.42427370593395791912102636538, 8.060706767888440493666686375696, 8.600506626386974754733153599815

Graph of the $Z$-function along the critical line