Properties

Label 2-2178-1.1-c1-0-33
Degree $2$
Conductor $2178$
Sign $-1$
Analytic cond. $17.3914$
Root an. cond. $4.17030$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3.46·5-s − 3.46·7-s − 8-s − 3.46·10-s − 3.46·13-s + 3.46·14-s + 16-s − 6·17-s + 6.92·19-s + 3.46·20-s − 3.46·23-s + 6.99·25-s + 3.46·26-s − 3.46·28-s + 6·29-s − 8·31-s − 32-s + 6·34-s − 11.9·35-s − 2·37-s − 6.92·38-s − 3.46·40-s − 6·41-s + 3.46·46-s − 10.3·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.54·5-s − 1.30·7-s − 0.353·8-s − 1.09·10-s − 0.960·13-s + 0.925·14-s + 0.250·16-s − 1.45·17-s + 1.58·19-s + 0.774·20-s − 0.722·23-s + 1.39·25-s + 0.679·26-s − 0.654·28-s + 1.11·29-s − 1.43·31-s − 0.176·32-s + 1.02·34-s − 2.02·35-s − 0.328·37-s − 1.12·38-s − 0.547·40-s − 0.937·41-s + 0.510·46-s − 1.51·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2178 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2178 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2178\)    =    \(2 \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(17.3914\)
Root analytic conductor: \(4.17030\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2178,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 - 3.46T + 5T^{2} \)
7 \( 1 + 3.46T + 7T^{2} \)
13 \( 1 + 3.46T + 13T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 - 6.92T + 19T^{2} \)
23 \( 1 + 3.46T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 10.3T + 47T^{2} \)
53 \( 1 + 10.3T + 53T^{2} \)
59 \( 1 + 6.92T + 59T^{2} \)
61 \( 1 - 3.46T + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 + 3.46T + 71T^{2} \)
73 \( 1 - 13.8T + 73T^{2} \)
79 \( 1 - 3.46T + 79T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 - 13.8T + 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.045988152678817840719674687896, −7.974118909830113277898075007181, −6.84570371632624073085198253387, −6.58787292885126702103827837214, −5.67920969573548208024374822969, −4.89405740597908458181000854011, −3.35902641318813610654946834557, −2.53889350872144173817929234141, −1.64980167632186299370178743758, 0, 1.64980167632186299370178743758, 2.53889350872144173817929234141, 3.35902641318813610654946834557, 4.89405740597908458181000854011, 5.67920969573548208024374822969, 6.58787292885126702103827837214, 6.84570371632624073085198253387, 7.974118909830113277898075007181, 9.045988152678817840719674687896

Graph of the $Z$-function along the critical line