L(s) = 1 | − 1.41·2-s + (−0.707 − 0.707i)3-s + 1.00·4-s + (1.00 + 1.00i)6-s + 1.00i·9-s + (−0.707 − 0.707i)12-s − 0.999·16-s − 1.41·17-s − 1.41i·18-s + (0.707 − 0.707i)27-s − i·29-s + 1.41·32-s + 2.00·34-s + 1.00i·36-s − 1.41i·37-s + ⋯ |
L(s) = 1 | − 1.41·2-s + (−0.707 − 0.707i)3-s + 1.00·4-s + (1.00 + 1.00i)6-s + 1.00i·9-s + (−0.707 − 0.707i)12-s − 0.999·16-s − 1.41·17-s − 1.41i·18-s + (0.707 − 0.707i)27-s − i·29-s + 1.41·32-s + 2.00·34-s + 1.00i·36-s − 1.41i·37-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)(−0.707+0.707i)Λ(1−s)
Λ(s)=(=(2175s/2ΓC(s)L(s)(−0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
2175
= 3⋅52⋅29
|
Sign: |
−0.707+0.707i
|
Analytic conductor: |
1.08546 |
Root analytic conductor: |
1.04185 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2175(1826,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2175, ( :0), −0.707+0.707i)
|
Particular Values
L(21) |
≈ |
0.2442097720 |
L(21) |
≈ |
0.2442097720 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.707+0.707i)T |
| 5 | 1 |
| 29 | 1+iT |
good | 2 | 1+1.41T+T2 |
| 7 | 1+T2 |
| 11 | 1+T2 |
| 13 | 1+T2 |
| 17 | 1+1.41T+T2 |
| 19 | 1−T2 |
| 23 | 1−T2 |
| 31 | 1−T2 |
| 37 | 1+1.41iT−T2 |
| 41 | 1+T2 |
| 43 | 1−1.41iT−T2 |
| 47 | 1−1.41T+T2 |
| 53 | 1−T2 |
| 59 | 1+2iT−T2 |
| 61 | 1−T2 |
| 67 | 1+T2 |
| 71 | 1+2iT−T2 |
| 73 | 1+1.41iT−T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+T2 |
| 97 | 1−1.41iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.042372603365892433783286145829, −8.032248482562974332471705275280, −7.68767066791053322335997440709, −6.71032443837427956329442847953, −6.26222535343257359988756493995, −5.08215947008945072946602121854, −4.20865028647409363998692113396, −2.48864770213640067956031190971, −1.67862085979285519302565276236, −0.33228161875003712152339817706,
1.22802583446277363449727970081, 2.59021122765571353649079088826, 3.97060540279298605551049685533, 4.73682795611349426892386075174, 5.68376103870545192860691440655, 6.74406962298863786701846641547, 7.14327671169323356247640484887, 8.388602377731503583936217095417, 8.841176608305671191361704665744, 9.511385970112094172872074819385