L(s) = 1 | − 1.41·2-s + (−0.707 − 0.707i)3-s + 1.00·4-s + (1.00 + 1.00i)6-s + 1.00i·9-s + (−0.707 − 0.707i)12-s − 0.999·16-s − 1.41·17-s − 1.41i·18-s + (0.707 − 0.707i)27-s − i·29-s + 1.41·32-s + 2.00·34-s + 1.00i·36-s − 1.41i·37-s + ⋯ |
L(s) = 1 | − 1.41·2-s + (−0.707 − 0.707i)3-s + 1.00·4-s + (1.00 + 1.00i)6-s + 1.00i·9-s + (−0.707 − 0.707i)12-s − 0.999·16-s − 1.41·17-s − 1.41i·18-s + (0.707 − 0.707i)27-s − i·29-s + 1.41·32-s + 2.00·34-s + 1.00i·36-s − 1.41i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2442097720\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2442097720\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
| 29 | \( 1 + iT \) |
good | 2 | \( 1 + 1.41T + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + 1.41T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + 1.41iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - 1.41iT - T^{2} \) |
| 47 | \( 1 - 1.41T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + 2iT - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + 2iT - T^{2} \) |
| 73 | \( 1 + 1.41iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - 1.41iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.042372603365892433783286145829, −8.032248482562974332471705275280, −7.68767066791053322335997440709, −6.71032443837427956329442847953, −6.26222535343257359988756493995, −5.08215947008945072946602121854, −4.20865028647409363998692113396, −2.48864770213640067956031190971, −1.67862085979285519302565276236, −0.33228161875003712152339817706,
1.22802583446277363449727970081, 2.59021122765571353649079088826, 3.97060540279298605551049685533, 4.73682795611349426892386075174, 5.68376103870545192860691440655, 6.74406962298863786701846641547, 7.14327671169323356247640484887, 8.388602377731503583936217095417, 8.841176608305671191361704665744, 9.511385970112094172872074819385