Properties

Label 2-2175-5.4-c1-0-67
Degree $2$
Conductor $2175$
Sign $-0.894 - 0.447i$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.56i·2-s i·3-s − 0.438·4-s − 1.56·6-s + 5.12i·7-s − 2.43i·8-s − 9-s − 1.43·11-s + 0.438i·12-s + 2i·13-s + 8·14-s − 4.68·16-s − 7.12i·17-s + 1.56i·18-s − 5.12·19-s + ⋯
L(s)  = 1  − 1.10i·2-s − 0.577i·3-s − 0.219·4-s − 0.637·6-s + 1.93i·7-s − 0.862i·8-s − 0.333·9-s − 0.433·11-s + 0.126i·12-s + 0.554i·13-s + 2.13·14-s − 1.17·16-s − 1.72i·17-s + 0.368i·18-s − 1.17·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2175} (349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9473941863\)
\(L(\frac12)\) \(\approx\) \(0.9473941863\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + iT \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 1.56iT - 2T^{2} \)
7 \( 1 - 5.12iT - 7T^{2} \)
11 \( 1 + 1.43T + 11T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 + 7.12iT - 17T^{2} \)
19 \( 1 + 5.12T + 19T^{2} \)
23 \( 1 + 6.56iT - 23T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 1.68iT - 37T^{2} \)
41 \( 1 + 1.68T + 41T^{2} \)
43 \( 1 + 7.68iT - 43T^{2} \)
47 \( 1 + 13.1iT - 47T^{2} \)
53 \( 1 - 3.43iT - 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 - 0.876T + 61T^{2} \)
67 \( 1 + 11.3iT - 67T^{2} \)
71 \( 1 + 2.87T + 71T^{2} \)
73 \( 1 + 1.68iT - 73T^{2} \)
79 \( 1 - 12T + 79T^{2} \)
83 \( 1 - 2.56iT - 83T^{2} \)
89 \( 1 + 12.2T + 89T^{2} \)
97 \( 1 + 5.68iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.897093357618092536862461746904, −8.055700443637006929034412335553, −6.88718665361398093858988428751, −6.37172819632449471808324337488, −5.37289686107096121756035362722, −4.53099212439768909408156804900, −3.13864945625753608646767699428, −2.39994278312980442165263612156, −2.00275038207825084095357549378, −0.30466270150442596889614971048, 1.51057248231330080323362777799, 3.10094996730921783943123629256, 4.10453349609749920308058363473, 4.67115838437079923079693267772, 5.78147631065495380273705619340, 6.38886708310185818096181551809, 7.21114423886420853762153408035, 8.017176098629604895214388498313, 8.237231645014302324490897869735, 9.523890087761886198442740425968

Graph of the $Z$-function along the critical line