L(s) = 1 | − 1.79i·2-s + i·3-s − 1.20·4-s + 1.79·6-s − i·7-s − 1.41i·8-s − 9-s + 5·11-s − 1.20i·12-s − 4.58i·13-s − 1.79·14-s − 4.95·16-s + 3i·17-s + 1.79i·18-s − 3.58·19-s + ⋯ |
L(s) = 1 | − 1.26i·2-s + 0.577i·3-s − 0.604·4-s + 0.731·6-s − 0.377i·7-s − 0.501i·8-s − 0.333·9-s + 1.50·11-s − 0.348i·12-s − 1.27i·13-s − 0.478·14-s − 1.23·16-s + 0.727i·17-s + 0.422i·18-s − 0.821·19-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
2175
= 3⋅52⋅29
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
17.3674 |
Root analytic conductor: |
4.16742 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2175(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2175, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.658103881 |
L(21) |
≈ |
1.658103881 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−iT |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1+1.79iT−2T2 |
| 7 | 1+iT−7T2 |
| 11 | 1−5T+11T2 |
| 13 | 1+4.58iT−13T2 |
| 17 | 1−3iT−17T2 |
| 19 | 1+3.58T+19T2 |
| 23 | 1+4iT−23T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−4iT−37T2 |
| 41 | 1+9.16T+41T2 |
| 43 | 1+9.58iT−43T2 |
| 47 | 1+10.5iT−47T2 |
| 53 | 1−0.417iT−53T2 |
| 59 | 1−7.58T+59T2 |
| 61 | 1−12.7T+61T2 |
| 67 | 1−4.16iT−67T2 |
| 71 | 1+9.58T+71T2 |
| 73 | 1−4iT−73T2 |
| 79 | 1+7.58T+79T2 |
| 83 | 1+11.5iT−83T2 |
| 89 | 1+1.41T+89T2 |
| 97 | 1+11.5iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.753101601478421218480050782184, −8.476225949962167607138452332631, −7.04388804678459295085891399283, −6.42693224397819184236512680534, −5.35506857290199480795398613436, −4.16357382058152508737311638387, −3.82146709273995111677361717207, −2.87039569639614589938371165287, −1.76332515639060866721098504392, −0.58698656628805986390457317485,
1.46564327400613206822686900070, 2.49355935340586187300617968016, 3.92994855302328972088214128811, 4.79646561414338014838608766048, 5.78772599731370243859779649171, 6.52025793371046685441787730877, 6.85675038928827682182166198132, 7.65522005202914575443512844989, 8.552990298507929512903568142319, 9.065106364759053554227844637744