Properties

Label 2-2175-435.434-c0-0-6
Degree $2$
Conductor $2175$
Sign $0.447 - 0.894i$
Analytic cond. $1.08546$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.53i·2-s i·3-s − 1.34·4-s + 1.53·6-s − 0.347i·7-s − 0.532i·8-s − 9-s + 1.87·11-s + 1.34i·12-s + 1.53i·13-s + 0.532·14-s − 0.532·16-s − 1.87i·17-s − 1.53i·18-s − 0.347·21-s + 2.87i·22-s + ⋯
L(s)  = 1  + 1.53i·2-s i·3-s − 1.34·4-s + 1.53·6-s − 0.347i·7-s − 0.532i·8-s − 9-s + 1.87·11-s + 1.34i·12-s + 1.53i·13-s + 0.532·14-s − 0.532·16-s − 1.87i·17-s − 1.53i·18-s − 0.347·21-s + 2.87i·22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(1.08546\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2175} (2174, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :0),\ 0.447 - 0.894i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.205881056\)
\(L(\frac12)\) \(\approx\) \(1.205881056\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + iT \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - 1.53iT - T^{2} \)
7 \( 1 + 0.347iT - T^{2} \)
11 \( 1 - 1.87T + T^{2} \)
13 \( 1 - 1.53iT - T^{2} \)
17 \( 1 + 1.87iT - T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 - T + T^{2} \)
43 \( 1 + T^{2} \)
47 \( 1 - 0.347iT - T^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.87iT - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 - 1.53T + T^{2} \)
97 \( 1 + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.120114399174222850121149402071, −8.493859891323851030355008546614, −7.46041159003987757992703552497, −6.94751150768018472852181300659, −6.60854051057448722831774981161, −5.83848832632293935225825974135, −4.77184252945360427516941172874, −4.01880319095264500850401484173, −2.51474962277231355101912560480, −1.16097646635749246192058199182, 1.14951364616999161823297943983, 2.39482021786442359122130640401, 3.44912402999377911778468326972, 3.85693782182176314157368440837, 4.70964438917740111320191090345, 5.81673649232392043734986820544, 6.48835568156517295865761999221, 8.038717719081150312969326345698, 8.761720593175655671886089939897, 9.315863832198827647008157689955

Graph of the $Z$-function along the critical line