L(s) = 1 | + 1.53i·2-s − i·3-s − 1.34·4-s + 1.53·6-s − 0.347i·7-s − 0.532i·8-s − 9-s + 1.87·11-s + 1.34i·12-s + 1.53i·13-s + 0.532·14-s − 0.532·16-s − 1.87i·17-s − 1.53i·18-s − 0.347·21-s + 2.87i·22-s + ⋯ |
L(s) = 1 | + 1.53i·2-s − i·3-s − 1.34·4-s + 1.53·6-s − 0.347i·7-s − 0.532i·8-s − 9-s + 1.87·11-s + 1.34i·12-s + 1.53i·13-s + 0.532·14-s − 0.532·16-s − 1.87i·17-s − 1.53i·18-s − 0.347·21-s + 2.87i·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.205881056\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.205881056\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 - T \) |
good | 2 | \( 1 - 1.53iT - T^{2} \) |
| 7 | \( 1 + 0.347iT - T^{2} \) |
| 11 | \( 1 - 1.87T + T^{2} \) |
| 13 | \( 1 - 1.53iT - T^{2} \) |
| 17 | \( 1 + 1.87iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - 0.347iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 1.87iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 1.53T + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.120114399174222850121149402071, −8.493859891323851030355008546614, −7.46041159003987757992703552497, −6.94751150768018472852181300659, −6.60854051057448722831774981161, −5.83848832632293935225825974135, −4.77184252945360427516941172874, −4.01880319095264500850401484173, −2.51474962277231355101912560480, −1.16097646635749246192058199182,
1.14951364616999161823297943983, 2.39482021786442359122130640401, 3.44912402999377911778468326972, 3.85693782182176314157368440837, 4.70964438917740111320191090345, 5.81673649232392043734986820544, 6.48835568156517295865761999221, 8.038717719081150312969326345698, 8.761720593175655671886089939897, 9.315863832198827647008157689955