L(s) = 1 | + 0.347i·2-s − i·3-s + 0.879·4-s + 0.347·6-s − 1.87i·7-s + 0.652i·8-s − 9-s + 1.53·11-s − 0.879i·12-s − 0.347i·13-s + 0.652·14-s + 0.652·16-s + 1.53i·17-s − 0.347i·18-s − 1.87·21-s + 0.532i·22-s + ⋯ |
L(s) = 1 | + 0.347i·2-s − i·3-s + 0.879·4-s + 0.347·6-s − 1.87i·7-s + 0.652i·8-s − 9-s + 1.53·11-s − 0.879i·12-s − 0.347i·13-s + 0.652·14-s + 0.652·16-s + 1.53i·17-s − 0.347i·18-s − 1.87·21-s + 0.532i·22-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)(0.447+0.894i)Λ(1−s)
Λ(s)=(=(2175s/2ΓC(s)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2175
= 3⋅52⋅29
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
1.08546 |
Root analytic conductor: |
1.04185 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2175(2174,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2175, ( :0), 0.447+0.894i)
|
Particular Values
L(21) |
≈ |
1.524096951 |
L(21) |
≈ |
1.524096951 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1−0.347iT−T2 |
| 7 | 1+1.87iT−T2 |
| 11 | 1−1.53T+T2 |
| 13 | 1+0.347iT−T2 |
| 17 | 1−1.53iT−T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1+T+T2 |
| 43 | 1+T2 |
| 47 | 1+1.87iT−T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−1.53iT−T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1+0.347T+T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.818733295852830520035133972650, −8.061166441547019587320096293564, −7.41172586148492948770795137387, −6.76796647143613562922316230230, −6.40670099368601936077330933420, −5.44997141458835471154252212047, −3.99792092604343512027324767418, −3.43410170924670516091633517555, −1.88957024790543485481415868619, −1.17871366093912010891378725131,
1.78495838208498490317553901161, 2.74694215368942342595023696109, 3.41521212120751373256652689672, 4.54052864524554951160963920347, 5.47432548594210259895632437752, 6.14484266755393571404332150041, 6.86403047372750676836152242917, 8.017465875846241912170344301256, 9.136425061981662775916504624937, 9.219538216138578897846526317385