L(s) = 1 | + 0.347i·2-s − i·3-s + 0.879·4-s + 0.347·6-s − 1.87i·7-s + 0.652i·8-s − 9-s + 1.53·11-s − 0.879i·12-s − 0.347i·13-s + 0.652·14-s + 0.652·16-s + 1.53i·17-s − 0.347i·18-s − 1.87·21-s + 0.532i·22-s + ⋯ |
L(s) = 1 | + 0.347i·2-s − i·3-s + 0.879·4-s + 0.347·6-s − 1.87i·7-s + 0.652i·8-s − 9-s + 1.53·11-s − 0.879i·12-s − 0.347i·13-s + 0.652·14-s + 0.652·16-s + 1.53i·17-s − 0.347i·18-s − 1.87·21-s + 0.532i·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.524096951\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.524096951\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 - 0.347iT - T^{2} \) |
| 7 | \( 1 + 1.87iT - T^{2} \) |
| 11 | \( 1 - 1.53T + T^{2} \) |
| 13 | \( 1 + 0.347iT - T^{2} \) |
| 17 | \( 1 - 1.53iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + 1.87iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 1.53iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + 0.347T + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.818733295852830520035133972650, −8.061166441547019587320096293564, −7.41172586148492948770795137387, −6.76796647143613562922316230230, −6.40670099368601936077330933420, −5.44997141458835471154252212047, −3.99792092604343512027324767418, −3.43410170924670516091633517555, −1.88957024790543485481415868619, −1.17871366093912010891378725131,
1.78495838208498490317553901161, 2.74694215368942342595023696109, 3.41521212120751373256652689672, 4.54052864524554951160963920347, 5.47432548594210259895632437752, 6.14484266755393571404332150041, 6.86403047372750676836152242917, 8.017465875846241912170344301256, 9.136425061981662775916504624937, 9.219538216138578897846526317385