L(s) = 1 | − i·2-s − i·3-s − 6-s + i·7-s − i·8-s − 9-s + 11-s − i·13-s + 14-s − 16-s − i·17-s + i·18-s + 21-s − i·22-s − 24-s + ⋯ |
L(s) = 1 | − i·2-s − i·3-s − 6-s + i·7-s − i·8-s − 9-s + 11-s − i·13-s + 14-s − 16-s − i·17-s + i·18-s + 21-s − i·22-s − 24-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)(−0.894+0.447i)Λ(1−s)
Λ(s)=(=(2175s/2ΓC(s)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
2175
= 3⋅52⋅29
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
1.08546 |
Root analytic conductor: |
1.04185 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2175(2174,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2175, ( :0), −0.894+0.447i)
|
Particular Values
L(21) |
≈ |
1.299551278 |
L(21) |
≈ |
1.299551278 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1+iT−T2 |
| 7 | 1−iT−T2 |
| 11 | 1−T+T2 |
| 13 | 1+iT−T2 |
| 17 | 1+iT−T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1+2T+T2 |
| 43 | 1+T2 |
| 47 | 1+iT−T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−iT−T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1+T+T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.907894277955556905030710725497, −8.332023881021735066899812635991, −7.25003020581366123991314221918, −6.65687536901623601143291557610, −5.86540235829576364993373479037, −4.96294781581387227309729325178, −3.52547111520363988912200447408, −2.81430228398164299149514404071, −2.03124391828388729288183065624, −0.947433202032195862022651083637,
1.73563806907604143759868119808, 3.22630213458761895300968613762, 4.17436563751000314271022318241, 4.70306895354367200128885015168, 5.80345566680843606687673426517, 6.53638663714794155429031410279, 7.04188134689925459582475490368, 8.120545201009249455083349146010, 8.664226170490811445719073850017, 9.472444300959686171008626663092