L(s) = 1 | − i·2-s − i·3-s − 6-s + i·7-s − i·8-s − 9-s + 11-s − i·13-s + 14-s − 16-s − i·17-s + i·18-s + 21-s − i·22-s − 24-s + ⋯ |
L(s) = 1 | − i·2-s − i·3-s − 6-s + i·7-s − i·8-s − 9-s + 11-s − i·13-s + 14-s − 16-s − i·17-s + i·18-s + 21-s − i·22-s − 24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.299551278\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.299551278\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 - T \) |
good | 2 | \( 1 + iT - T^{2} \) |
| 7 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 - T + T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + 2T + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.907894277955556905030710725497, −8.332023881021735066899812635991, −7.25003020581366123991314221918, −6.65687536901623601143291557610, −5.86540235829576364993373479037, −4.96294781581387227309729325178, −3.52547111520363988912200447408, −2.81430228398164299149514404071, −2.03124391828388729288183065624, −0.947433202032195862022651083637,
1.73563806907604143759868119808, 3.22630213458761895300968613762, 4.17436563751000314271022318241, 4.70306895354367200128885015168, 5.80345566680843606687673426517, 6.53638663714794155429031410279, 7.04188134689925459582475490368, 8.120545201009249455083349146010, 8.664226170490811445719073850017, 9.472444300959686171008626663092