L(s) = 1 | − 5·2-s + 3·3-s + 17·4-s − 15·6-s − 16·7-s − 45·8-s + 9·9-s − 44·11-s + 51·12-s − 78·13-s + 80·14-s + 89·16-s − 18·17-s − 45·18-s − 28·19-s − 48·21-s + 220·22-s − 184·23-s − 135·24-s + 390·26-s + 27·27-s − 272·28-s + 29·29-s − 224·31-s − 85·32-s − 132·33-s + 90·34-s + ⋯ |
L(s) = 1 | − 1.76·2-s + 0.577·3-s + 17/8·4-s − 1.02·6-s − 0.863·7-s − 1.98·8-s + 1/3·9-s − 1.20·11-s + 1.22·12-s − 1.66·13-s + 1.52·14-s + 1.39·16-s − 0.256·17-s − 0.589·18-s − 0.338·19-s − 0.498·21-s + 2.13·22-s − 1.66·23-s − 1.14·24-s + 2.94·26-s + 0.192·27-s − 1.83·28-s + 0.185·29-s − 1.29·31-s − 0.469·32-s − 0.696·33-s + 0.453·34-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2175s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−pT |
| 5 | 1 |
| 29 | 1−pT |
good | 2 | 1+5T+p3T2 |
| 7 | 1+16T+p3T2 |
| 11 | 1+4pT+p3T2 |
| 13 | 1+6pT+p3T2 |
| 17 | 1+18T+p3T2 |
| 19 | 1+28T+p3T2 |
| 23 | 1+8pT+p3T2 |
| 31 | 1+224T+p3T2 |
| 37 | 1+254T+p3T2 |
| 41 | 1+78T+p3T2 |
| 43 | 1−260T+p3T2 |
| 47 | 1+312T+p3T2 |
| 53 | 1+574T+p3T2 |
| 59 | 1−180T+p3T2 |
| 61 | 1+10pT+p3T2 |
| 67 | 1−340T+p3T2 |
| 71 | 1−296T+p3T2 |
| 73 | 1+394T+p3T2 |
| 79 | 1+960T+p3T2 |
| 83 | 1−908T+p3T2 |
| 89 | 1+990T+p3T2 |
| 97 | 1+1234T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.994998785593754847490276583999, −7.47924803281431699050672798748, −6.83391067655151459153220320592, −5.88951752091034193698067128248, −4.71678990498982780687333634282, −3.31739973970105445144356077472, −2.44968371113395567636761170728, −1.83528885658038055157024328758, 0, 0,
1.83528885658038055157024328758, 2.44968371113395567636761170728, 3.31739973970105445144356077472, 4.71678990498982780687333634282, 5.88951752091034193698067128248, 6.83391067655151459153220320592, 7.47924803281431699050672798748, 7.994998785593754847490276583999