Properties

Label 2-2175-1.1-c1-0-40
Degree $2$
Conductor $2175$
Sign $-1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.754·2-s − 3-s − 1.43·4-s + 0.754·6-s − 4.18·7-s + 2.58·8-s + 9-s + 0.596·11-s + 1.43·12-s + 2.18·13-s + 3.15·14-s + 0.908·16-s − 2.81·17-s − 0.754·18-s + 0.528·19-s + 4.18·21-s − 0.450·22-s − 0.590·23-s − 2.58·24-s − 1.64·26-s − 27-s + 5.98·28-s + 29-s + 8.02·31-s − 5.86·32-s − 0.596·33-s + 2.12·34-s + ⋯
L(s)  = 1  − 0.533·2-s − 0.577·3-s − 0.715·4-s + 0.308·6-s − 1.58·7-s + 0.915·8-s + 0.333·9-s + 0.179·11-s + 0.413·12-s + 0.606·13-s + 0.843·14-s + 0.227·16-s − 0.682·17-s − 0.177·18-s + 0.121·19-s + 0.913·21-s − 0.0960·22-s − 0.123·23-s − 0.528·24-s − 0.323·26-s − 0.192·27-s + 1.13·28-s + 0.185·29-s + 1.44·31-s − 1.03·32-s − 0.103·33-s + 0.363·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 0.754T + 2T^{2} \)
7 \( 1 + 4.18T + 7T^{2} \)
11 \( 1 - 0.596T + 11T^{2} \)
13 \( 1 - 2.18T + 13T^{2} \)
17 \( 1 + 2.81T + 17T^{2} \)
19 \( 1 - 0.528T + 19T^{2} \)
23 \( 1 + 0.590T + 23T^{2} \)
31 \( 1 - 8.02T + 31T^{2} \)
37 \( 1 - 2.52T + 37T^{2} \)
41 \( 1 - 1.57T + 41T^{2} \)
43 \( 1 - 6.98T + 43T^{2} \)
47 \( 1 - 2.57T + 47T^{2} \)
53 \( 1 + 10.3T + 53T^{2} \)
59 \( 1 - 13.9T + 59T^{2} \)
61 \( 1 + 11.1T + 61T^{2} \)
67 \( 1 + 0.614T + 67T^{2} \)
71 \( 1 - 9.28T + 71T^{2} \)
73 \( 1 + 9.59T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 + 3.92T + 83T^{2} \)
89 \( 1 + 12.3T + 89T^{2} \)
97 \( 1 + 3.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.859526112336300134003478691936, −8.032906487908560067729109043697, −7.04030914180551224372856395710, −6.35280605799936789759369877241, −5.67977854501064474690570106947, −4.53246181097811265902315628208, −3.86896209949477103890157631348, −2.77032007654021612627617461231, −1.11834923788114409681819649097, 0, 1.11834923788114409681819649097, 2.77032007654021612627617461231, 3.86896209949477103890157631348, 4.53246181097811265902315628208, 5.67977854501064474690570106947, 6.35280605799936789759369877241, 7.04030914180551224372856395710, 8.032906487908560067729109043697, 8.859526112336300134003478691936

Graph of the $Z$-function along the critical line