L(s) = 1 | − 0.754·2-s − 3-s − 1.43·4-s + 0.754·6-s − 4.18·7-s + 2.58·8-s + 9-s + 0.596·11-s + 1.43·12-s + 2.18·13-s + 3.15·14-s + 0.908·16-s − 2.81·17-s − 0.754·18-s + 0.528·19-s + 4.18·21-s − 0.450·22-s − 0.590·23-s − 2.58·24-s − 1.64·26-s − 27-s + 5.98·28-s + 29-s + 8.02·31-s − 5.86·32-s − 0.596·33-s + 2.12·34-s + ⋯ |
L(s) = 1 | − 0.533·2-s − 0.577·3-s − 0.715·4-s + 0.308·6-s − 1.58·7-s + 0.915·8-s + 0.333·9-s + 0.179·11-s + 0.413·12-s + 0.606·13-s + 0.843·14-s + 0.227·16-s − 0.682·17-s − 0.177·18-s + 0.121·19-s + 0.913·21-s − 0.0960·22-s − 0.123·23-s − 0.528·24-s − 0.323·26-s − 0.192·27-s + 1.13·28-s + 0.185·29-s + 1.44·31-s − 1.03·32-s − 0.103·33-s + 0.363·34-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1+0.754T+2T2 |
| 7 | 1+4.18T+7T2 |
| 11 | 1−0.596T+11T2 |
| 13 | 1−2.18T+13T2 |
| 17 | 1+2.81T+17T2 |
| 19 | 1−0.528T+19T2 |
| 23 | 1+0.590T+23T2 |
| 31 | 1−8.02T+31T2 |
| 37 | 1−2.52T+37T2 |
| 41 | 1−1.57T+41T2 |
| 43 | 1−6.98T+43T2 |
| 47 | 1−2.57T+47T2 |
| 53 | 1+10.3T+53T2 |
| 59 | 1−13.9T+59T2 |
| 61 | 1+11.1T+61T2 |
| 67 | 1+0.614T+67T2 |
| 71 | 1−9.28T+71T2 |
| 73 | 1+9.59T+73T2 |
| 79 | 1+10.3T+79T2 |
| 83 | 1+3.92T+83T2 |
| 89 | 1+12.3T+89T2 |
| 97 | 1+3.21T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.859526112336300134003478691936, −8.032906487908560067729109043697, −7.04030914180551224372856395710, −6.35280605799936789759369877241, −5.67977854501064474690570106947, −4.53246181097811265902315628208, −3.86896209949477103890157631348, −2.77032007654021612627617461231, −1.11834923788114409681819649097, 0,
1.11834923788114409681819649097, 2.77032007654021612627617461231, 3.86896209949477103890157631348, 4.53246181097811265902315628208, 5.67977854501064474690570106947, 6.35280605799936789759369877241, 7.04030914180551224372856395710, 8.032906487908560067729109043697, 8.859526112336300134003478691936