Properties

Label 2-2175-1.1-c1-0-4
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.135·2-s − 3-s − 1.98·4-s − 0.135·6-s − 1.12·7-s − 0.537·8-s + 9-s − 5.08·11-s + 1.98·12-s + 0.338·13-s − 0.151·14-s + 3.89·16-s − 1.77·17-s + 0.135·18-s − 5.13·19-s + 1.12·21-s − 0.685·22-s − 7.31·23-s + 0.537·24-s + 0.0457·26-s − 27-s + 2.22·28-s + 29-s + 8.74·31-s + 1.60·32-s + 5.08·33-s − 0.238·34-s + ⋯
L(s)  = 1  + 0.0954·2-s − 0.577·3-s − 0.990·4-s − 0.0551·6-s − 0.424·7-s − 0.190·8-s + 0.333·9-s − 1.53·11-s + 0.572·12-s + 0.0939·13-s − 0.0405·14-s + 0.972·16-s − 0.429·17-s + 0.0318·18-s − 1.17·19-s + 0.245·21-s − 0.146·22-s − 1.52·23-s + 0.109·24-s + 0.00897·26-s − 0.192·27-s + 0.420·28-s + 0.185·29-s + 1.57·31-s + 0.282·32-s + 0.884·33-s − 0.0409·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5551699118\)
\(L(\frac12)\) \(\approx\) \(0.5551699118\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - 0.135T + 2T^{2} \)
7 \( 1 + 1.12T + 7T^{2} \)
11 \( 1 + 5.08T + 11T^{2} \)
13 \( 1 - 0.338T + 13T^{2} \)
17 \( 1 + 1.77T + 17T^{2} \)
19 \( 1 + 5.13T + 19T^{2} \)
23 \( 1 + 7.31T + 23T^{2} \)
31 \( 1 - 8.74T + 31T^{2} \)
37 \( 1 - 9.40T + 37T^{2} \)
41 \( 1 - 8.95T + 41T^{2} \)
43 \( 1 + 12.3T + 43T^{2} \)
47 \( 1 - 2.12T + 47T^{2} \)
53 \( 1 + 10.9T + 53T^{2} \)
59 \( 1 + 9.22T + 59T^{2} \)
61 \( 1 - 1.48T + 61T^{2} \)
67 \( 1 + 9.41T + 67T^{2} \)
71 \( 1 - 11.1T + 71T^{2} \)
73 \( 1 - 2.51T + 73T^{2} \)
79 \( 1 - 11.2T + 79T^{2} \)
83 \( 1 - 11.4T + 83T^{2} \)
89 \( 1 - 16.0T + 89T^{2} \)
97 \( 1 - 9.76T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.147530676922451589239639638888, −8.050416247444358702929420850645, −7.894379646578534421335950158219, −6.33373242326313554291353086860, −6.05790764408037266222091762969, −4.85179999782983522438846966953, −4.50919853439583452482543824739, −3.36305665104416248127961615640, −2.22533892996369667379036589032, −0.47509649146166903336571070911, 0.47509649146166903336571070911, 2.22533892996369667379036589032, 3.36305665104416248127961615640, 4.50919853439583452482543824739, 4.85179999782983522438846966953, 6.05790764408037266222091762969, 6.33373242326313554291353086860, 7.894379646578534421335950158219, 8.050416247444358702929420850645, 9.147530676922451589239639638888

Graph of the $Z$-function along the critical line