L(s) = 1 | + 0.135·2-s − 3-s − 1.98·4-s − 0.135·6-s − 1.12·7-s − 0.537·8-s + 9-s − 5.08·11-s + 1.98·12-s + 0.338·13-s − 0.151·14-s + 3.89·16-s − 1.77·17-s + 0.135·18-s − 5.13·19-s + 1.12·21-s − 0.685·22-s − 7.31·23-s + 0.537·24-s + 0.0457·26-s − 27-s + 2.22·28-s + 29-s + 8.74·31-s + 1.60·32-s + 5.08·33-s − 0.238·34-s + ⋯ |
L(s) = 1 | + 0.0954·2-s − 0.577·3-s − 0.990·4-s − 0.0551·6-s − 0.424·7-s − 0.190·8-s + 0.333·9-s − 1.53·11-s + 0.572·12-s + 0.0939·13-s − 0.0405·14-s + 0.972·16-s − 0.429·17-s + 0.0318·18-s − 1.17·19-s + 0.245·21-s − 0.146·22-s − 1.52·23-s + 0.109·24-s + 0.00897·26-s − 0.192·27-s + 0.420·28-s + 0.185·29-s + 1.57·31-s + 0.282·32-s + 0.884·33-s − 0.0409·34-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5551699118 |
L(21) |
≈ |
0.5551699118 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1−0.135T+2T2 |
| 7 | 1+1.12T+7T2 |
| 11 | 1+5.08T+11T2 |
| 13 | 1−0.338T+13T2 |
| 17 | 1+1.77T+17T2 |
| 19 | 1+5.13T+19T2 |
| 23 | 1+7.31T+23T2 |
| 31 | 1−8.74T+31T2 |
| 37 | 1−9.40T+37T2 |
| 41 | 1−8.95T+41T2 |
| 43 | 1+12.3T+43T2 |
| 47 | 1−2.12T+47T2 |
| 53 | 1+10.9T+53T2 |
| 59 | 1+9.22T+59T2 |
| 61 | 1−1.48T+61T2 |
| 67 | 1+9.41T+67T2 |
| 71 | 1−11.1T+71T2 |
| 73 | 1−2.51T+73T2 |
| 79 | 1−11.2T+79T2 |
| 83 | 1−11.4T+83T2 |
| 89 | 1−16.0T+89T2 |
| 97 | 1−9.76T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.147530676922451589239639638888, −8.050416247444358702929420850645, −7.894379646578534421335950158219, −6.33373242326313554291353086860, −6.05790764408037266222091762969, −4.85179999782983522438846966953, −4.50919853439583452482543824739, −3.36305665104416248127961615640, −2.22533892996369667379036589032, −0.47509649146166903336571070911,
0.47509649146166903336571070911, 2.22533892996369667379036589032, 3.36305665104416248127961615640, 4.50919853439583452482543824739, 4.85179999782983522438846966953, 6.05790764408037266222091762969, 6.33373242326313554291353086860, 7.894379646578534421335950158219, 8.050416247444358702929420850645, 9.147530676922451589239639638888