L(s) = 1 | + 1.98·2-s − 3-s + 1.93·4-s − 1.98·6-s − 2.16·7-s − 0.119·8-s + 9-s + 3.44·11-s − 1.93·12-s + 3.74·13-s − 4.29·14-s − 4.11·16-s − 4.33·17-s + 1.98·18-s + 3.90·19-s + 2.16·21-s + 6.84·22-s + 3.78·23-s + 0.119·24-s + 7.42·26-s − 27-s − 4.20·28-s + 29-s + 10.3·31-s − 7.93·32-s − 3.44·33-s − 8.60·34-s + ⋯ |
L(s) = 1 | + 1.40·2-s − 0.577·3-s + 0.969·4-s − 0.810·6-s − 0.818·7-s − 0.0423·8-s + 0.333·9-s + 1.03·11-s − 0.559·12-s + 1.03·13-s − 1.14·14-s − 1.02·16-s − 1.05·17-s + 0.467·18-s + 0.895·19-s + 0.472·21-s + 1.45·22-s + 0.789·23-s + 0.0244·24-s + 1.45·26-s − 0.192·27-s − 0.794·28-s + 0.185·29-s + 1.85·31-s − 1.40·32-s − 0.600·33-s − 1.47·34-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.003836522 |
L(21) |
≈ |
3.003836522 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1−1.98T+2T2 |
| 7 | 1+2.16T+7T2 |
| 11 | 1−3.44T+11T2 |
| 13 | 1−3.74T+13T2 |
| 17 | 1+4.33T+17T2 |
| 19 | 1−3.90T+19T2 |
| 23 | 1−3.78T+23T2 |
| 31 | 1−10.3T+31T2 |
| 37 | 1−7.70T+37T2 |
| 41 | 1−7.88T+41T2 |
| 43 | 1+0.975T+43T2 |
| 47 | 1+12.1T+47T2 |
| 53 | 1−13.1T+53T2 |
| 59 | 1−1.47T+59T2 |
| 61 | 1+4.24T+61T2 |
| 67 | 1−6.74T+67T2 |
| 71 | 1−10.3T+71T2 |
| 73 | 1−12.3T+73T2 |
| 79 | 1+5.02T+79T2 |
| 83 | 1+10.4T+83T2 |
| 89 | 1−4.35T+89T2 |
| 97 | 1+3.75T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.218169936895908471074162013214, −8.287617189628156252583816964597, −6.92134943470379853560250713443, −6.46239491474346456039077817011, −5.97702098799257871085606062883, −4.98247156281963945267549344676, −4.22984552967165552012042898578, −3.52534545507026369945491233549, −2.60968081231717799704858326995, −0.983878420232591295657335447188,
0.983878420232591295657335447188, 2.60968081231717799704858326995, 3.52534545507026369945491233549, 4.22984552967165552012042898578, 4.98247156281963945267549344676, 5.97702098799257871085606062883, 6.46239491474346456039077817011, 6.92134943470379853560250713443, 8.287617189628156252583816964597, 9.218169936895908471074162013214