Properties

Label 2-2175-1.1-c1-0-34
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.98·2-s − 3-s + 1.93·4-s − 1.98·6-s − 2.16·7-s − 0.119·8-s + 9-s + 3.44·11-s − 1.93·12-s + 3.74·13-s − 4.29·14-s − 4.11·16-s − 4.33·17-s + 1.98·18-s + 3.90·19-s + 2.16·21-s + 6.84·22-s + 3.78·23-s + 0.119·24-s + 7.42·26-s − 27-s − 4.20·28-s + 29-s + 10.3·31-s − 7.93·32-s − 3.44·33-s − 8.60·34-s + ⋯
L(s)  = 1  + 1.40·2-s − 0.577·3-s + 0.969·4-s − 0.810·6-s − 0.818·7-s − 0.0423·8-s + 0.333·9-s + 1.03·11-s − 0.559·12-s + 1.03·13-s − 1.14·14-s − 1.02·16-s − 1.05·17-s + 0.467·18-s + 0.895·19-s + 0.472·21-s + 1.45·22-s + 0.789·23-s + 0.0244·24-s + 1.45·26-s − 0.192·27-s − 0.794·28-s + 0.185·29-s + 1.85·31-s − 1.40·32-s − 0.600·33-s − 1.47·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.003836522\)
\(L(\frac12)\) \(\approx\) \(3.003836522\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - 1.98T + 2T^{2} \)
7 \( 1 + 2.16T + 7T^{2} \)
11 \( 1 - 3.44T + 11T^{2} \)
13 \( 1 - 3.74T + 13T^{2} \)
17 \( 1 + 4.33T + 17T^{2} \)
19 \( 1 - 3.90T + 19T^{2} \)
23 \( 1 - 3.78T + 23T^{2} \)
31 \( 1 - 10.3T + 31T^{2} \)
37 \( 1 - 7.70T + 37T^{2} \)
41 \( 1 - 7.88T + 41T^{2} \)
43 \( 1 + 0.975T + 43T^{2} \)
47 \( 1 + 12.1T + 47T^{2} \)
53 \( 1 - 13.1T + 53T^{2} \)
59 \( 1 - 1.47T + 59T^{2} \)
61 \( 1 + 4.24T + 61T^{2} \)
67 \( 1 - 6.74T + 67T^{2} \)
71 \( 1 - 10.3T + 71T^{2} \)
73 \( 1 - 12.3T + 73T^{2} \)
79 \( 1 + 5.02T + 79T^{2} \)
83 \( 1 + 10.4T + 83T^{2} \)
89 \( 1 - 4.35T + 89T^{2} \)
97 \( 1 + 3.75T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.218169936895908471074162013214, −8.287617189628156252583816964597, −6.92134943470379853560250713443, −6.46239491474346456039077817011, −5.97702098799257871085606062883, −4.98247156281963945267549344676, −4.22984552967165552012042898578, −3.52534545507026369945491233549, −2.60968081231717799704858326995, −0.983878420232591295657335447188, 0.983878420232591295657335447188, 2.60968081231717799704858326995, 3.52534545507026369945491233549, 4.22984552967165552012042898578, 4.98247156281963945267549344676, 5.97702098799257871085606062883, 6.46239491474346456039077817011, 6.92134943470379853560250713443, 8.287617189628156252583816964597, 9.218169936895908471074162013214

Graph of the $Z$-function along the critical line