Properties

Label 2-2175-1.1-c1-0-21
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.59·2-s − 3-s + 4.73·4-s + 2.59·6-s + 3.93·7-s − 7.10·8-s + 9-s + 2.24·11-s − 4.73·12-s − 2.09·13-s − 10.2·14-s + 8.97·16-s − 6.95·17-s − 2.59·18-s + 4.29·19-s − 3.93·21-s − 5.83·22-s + 5.19·23-s + 7.10·24-s + 5.43·26-s − 27-s + 18.6·28-s + 29-s + 2.25·31-s − 9.08·32-s − 2.24·33-s + 18.0·34-s + ⋯
L(s)  = 1  − 1.83·2-s − 0.577·3-s + 2.36·4-s + 1.05·6-s + 1.48·7-s − 2.51·8-s + 0.333·9-s + 0.677·11-s − 1.36·12-s − 0.580·13-s − 2.73·14-s + 2.24·16-s − 1.68·17-s − 0.611·18-s + 0.985·19-s − 0.859·21-s − 1.24·22-s + 1.08·23-s + 1.45·24-s + 1.06·26-s − 0.192·27-s + 3.52·28-s + 0.185·29-s + 0.404·31-s − 1.60·32-s − 0.391·33-s + 3.09·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7465838092\)
\(L(\frac12)\) \(\approx\) \(0.7465838092\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 2.59T + 2T^{2} \)
7 \( 1 - 3.93T + 7T^{2} \)
11 \( 1 - 2.24T + 11T^{2} \)
13 \( 1 + 2.09T + 13T^{2} \)
17 \( 1 + 6.95T + 17T^{2} \)
19 \( 1 - 4.29T + 19T^{2} \)
23 \( 1 - 5.19T + 23T^{2} \)
31 \( 1 - 2.25T + 31T^{2} \)
37 \( 1 - 10.5T + 37T^{2} \)
41 \( 1 + 2.66T + 41T^{2} \)
43 \( 1 + 6.03T + 43T^{2} \)
47 \( 1 - 7.74T + 47T^{2} \)
53 \( 1 - 1.41T + 53T^{2} \)
59 \( 1 - 5.76T + 59T^{2} \)
61 \( 1 + 10.9T + 61T^{2} \)
67 \( 1 - 11.7T + 67T^{2} \)
71 \( 1 + 4.55T + 71T^{2} \)
73 \( 1 + 12.3T + 73T^{2} \)
79 \( 1 - 14.4T + 79T^{2} \)
83 \( 1 - 3.81T + 83T^{2} \)
89 \( 1 + 2.07T + 89T^{2} \)
97 \( 1 + 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.054443128455907529195349297512, −8.405350027428219316928162443420, −7.63022892143888121680143117719, −7.02441396769026532923021784992, −6.32094479800245635144797047903, −5.17603007417575509697511783192, −4.35844636948417491593736125408, −2.65670989075033562603567888800, −1.69678880257147556323904755680, −0.807133543343497993372000165724, 0.807133543343497993372000165724, 1.69678880257147556323904755680, 2.65670989075033562603567888800, 4.35844636948417491593736125408, 5.17603007417575509697511783192, 6.32094479800245635144797047903, 7.02441396769026532923021784992, 7.63022892143888121680143117719, 8.405350027428219316928162443420, 9.054443128455907529195349297512

Graph of the $Z$-function along the critical line