L(s) = 1 | − 2.59·2-s − 3-s + 4.73·4-s + 2.59·6-s + 3.93·7-s − 7.10·8-s + 9-s + 2.24·11-s − 4.73·12-s − 2.09·13-s − 10.2·14-s + 8.97·16-s − 6.95·17-s − 2.59·18-s + 4.29·19-s − 3.93·21-s − 5.83·22-s + 5.19·23-s + 7.10·24-s + 5.43·26-s − 27-s + 18.6·28-s + 29-s + 2.25·31-s − 9.08·32-s − 2.24·33-s + 18.0·34-s + ⋯ |
L(s) = 1 | − 1.83·2-s − 0.577·3-s + 2.36·4-s + 1.05·6-s + 1.48·7-s − 2.51·8-s + 0.333·9-s + 0.677·11-s − 1.36·12-s − 0.580·13-s − 2.73·14-s + 2.24·16-s − 1.68·17-s − 0.611·18-s + 0.985·19-s − 0.859·21-s − 1.24·22-s + 1.08·23-s + 1.45·24-s + 1.06·26-s − 0.192·27-s + 3.52·28-s + 0.185·29-s + 0.404·31-s − 1.60·32-s − 0.391·33-s + 3.09·34-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7465838092 |
L(21) |
≈ |
0.7465838092 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1+2.59T+2T2 |
| 7 | 1−3.93T+7T2 |
| 11 | 1−2.24T+11T2 |
| 13 | 1+2.09T+13T2 |
| 17 | 1+6.95T+17T2 |
| 19 | 1−4.29T+19T2 |
| 23 | 1−5.19T+23T2 |
| 31 | 1−2.25T+31T2 |
| 37 | 1−10.5T+37T2 |
| 41 | 1+2.66T+41T2 |
| 43 | 1+6.03T+43T2 |
| 47 | 1−7.74T+47T2 |
| 53 | 1−1.41T+53T2 |
| 59 | 1−5.76T+59T2 |
| 61 | 1+10.9T+61T2 |
| 67 | 1−11.7T+67T2 |
| 71 | 1+4.55T+71T2 |
| 73 | 1+12.3T+73T2 |
| 79 | 1−14.4T+79T2 |
| 83 | 1−3.81T+83T2 |
| 89 | 1+2.07T+89T2 |
| 97 | 1+12.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.054443128455907529195349297512, −8.405350027428219316928162443420, −7.63022892143888121680143117719, −7.02441396769026532923021784992, −6.32094479800245635144797047903, −5.17603007417575509697511783192, −4.35844636948417491593736125408, −2.65670989075033562603567888800, −1.69678880257147556323904755680, −0.807133543343497993372000165724,
0.807133543343497993372000165724, 1.69678880257147556323904755680, 2.65670989075033562603567888800, 4.35844636948417491593736125408, 5.17603007417575509697511783192, 6.32094479800245635144797047903, 7.02441396769026532923021784992, 7.63022892143888121680143117719, 8.405350027428219316928162443420, 9.054443128455907529195349297512