Properties

Label 2-2175-1.1-c1-0-17
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 2·4-s − 2·6-s − 2·7-s + 9-s − 3·11-s + 2·12-s + 4·13-s + 4·14-s − 4·16-s + 8·17-s − 2·18-s − 2·21-s + 6·22-s − 23-s − 8·26-s + 27-s − 4·28-s + 29-s − 8·31-s + 8·32-s − 3·33-s − 16·34-s + 2·36-s − 7·37-s + 4·39-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 4-s − 0.816·6-s − 0.755·7-s + 1/3·9-s − 0.904·11-s + 0.577·12-s + 1.10·13-s + 1.06·14-s − 16-s + 1.94·17-s − 0.471·18-s − 0.436·21-s + 1.27·22-s − 0.208·23-s − 1.56·26-s + 0.192·27-s − 0.755·28-s + 0.185·29-s − 1.43·31-s + 1.41·32-s − 0.522·33-s − 2.74·34-s + 1/3·36-s − 1.15·37-s + 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9287179809\)
\(L(\frac12)\) \(\approx\) \(0.9287179809\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.026204258303570972775141705216, −8.393055517263135127517562818868, −7.71321986683429932357831257897, −7.18292635323516030785900459786, −6.12204212796184096175443912425, −5.25685379924244030560862286764, −3.83993387725300169108109456622, −3.09220257677483752161515538695, −1.91602304596019401141580620431, −0.76989224128822694234011319404, 0.76989224128822694234011319404, 1.91602304596019401141580620431, 3.09220257677483752161515538695, 3.83993387725300169108109456622, 5.25685379924244030560862286764, 6.12204212796184096175443912425, 7.18292635323516030785900459786, 7.71321986683429932357831257897, 8.393055517263135127517562818868, 9.026204258303570972775141705216

Graph of the $Z$-function along the critical line