L(s) = 1 | − 2·2-s + 3-s + 2·4-s − 2·6-s − 2·7-s + 9-s − 3·11-s + 2·12-s + 4·13-s + 4·14-s − 4·16-s + 8·17-s − 2·18-s − 2·21-s + 6·22-s − 23-s − 8·26-s + 27-s − 4·28-s + 29-s − 8·31-s + 8·32-s − 3·33-s − 16·34-s + 2·36-s − 7·37-s + 4·39-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.577·3-s + 4-s − 0.816·6-s − 0.755·7-s + 1/3·9-s − 0.904·11-s + 0.577·12-s + 1.10·13-s + 1.06·14-s − 16-s + 1.94·17-s − 0.471·18-s − 0.436·21-s + 1.27·22-s − 0.208·23-s − 1.56·26-s + 0.192·27-s − 0.755·28-s + 0.185·29-s − 1.43·31-s + 1.41·32-s − 0.522·33-s − 2.74·34-s + 1/3·36-s − 1.15·37-s + 0.640·39-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9287179809 |
L(21) |
≈ |
0.9287179809 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1+pT+pT2 |
| 7 | 1+2T+pT2 |
| 11 | 1+3T+pT2 |
| 13 | 1−4T+pT2 |
| 17 | 1−8T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+7T+pT2 |
| 41 | 1−7T+pT2 |
| 43 | 1−9T+pT2 |
| 47 | 1+12T+pT2 |
| 53 | 1−9T+pT2 |
| 59 | 1−10T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1+T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−9T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1−13T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.026204258303570972775141705216, −8.393055517263135127517562818868, −7.71321986683429932357831257897, −7.18292635323516030785900459786, −6.12204212796184096175443912425, −5.25685379924244030560862286764, −3.83993387725300169108109456622, −3.09220257677483752161515538695, −1.91602304596019401141580620431, −0.76989224128822694234011319404,
0.76989224128822694234011319404, 1.91602304596019401141580620431, 3.09220257677483752161515538695, 3.83993387725300169108109456622, 5.25685379924244030560862286764, 6.12204212796184096175443912425, 7.18292635323516030785900459786, 7.71321986683429932357831257897, 8.393055517263135127517562818868, 9.026204258303570972775141705216