L(s) = 1 | + 0.510·2-s + 3-s − 1.73·4-s + 0.510·6-s − 4.82·7-s − 1.90·8-s + 9-s + 4.88·11-s − 1.73·12-s − 4.59·13-s − 2.46·14-s + 2.50·16-s − 6.50·17-s + 0.510·18-s + 3.09·19-s − 4.82·21-s + 2.49·22-s + 5.62·23-s − 1.90·24-s − 2.34·26-s + 27-s + 8.38·28-s + 29-s + 9.24·31-s + 5.09·32-s + 4.88·33-s − 3.32·34-s + ⋯ |
L(s) = 1 | + 0.361·2-s + 0.577·3-s − 0.869·4-s + 0.208·6-s − 1.82·7-s − 0.675·8-s + 0.333·9-s + 1.47·11-s − 0.502·12-s − 1.27·13-s − 0.658·14-s + 0.625·16-s − 1.57·17-s + 0.120·18-s + 0.709·19-s − 1.05·21-s + 0.531·22-s + 1.17·23-s − 0.389·24-s − 0.460·26-s + 0.192·27-s + 1.58·28-s + 0.185·29-s + 1.66·31-s + 0.901·32-s + 0.850·33-s − 0.570·34-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.505092121 |
L(21) |
≈ |
1.505092121 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1−0.510T+2T2 |
| 7 | 1+4.82T+7T2 |
| 11 | 1−4.88T+11T2 |
| 13 | 1+4.59T+13T2 |
| 17 | 1+6.50T+17T2 |
| 19 | 1−3.09T+19T2 |
| 23 | 1−5.62T+23T2 |
| 31 | 1−9.24T+31T2 |
| 37 | 1−11.1T+37T2 |
| 41 | 1+2.84T+41T2 |
| 43 | 1−4.58T+43T2 |
| 47 | 1+3.62T+47T2 |
| 53 | 1−0.967T+53T2 |
| 59 | 1+0.298T+59T2 |
| 61 | 1+0.786T+61T2 |
| 67 | 1+4.86T+67T2 |
| 71 | 1−0.741T+71T2 |
| 73 | 1+5.52T+73T2 |
| 79 | 1+2.96T+79T2 |
| 83 | 1−13.6T+83T2 |
| 89 | 1−3.67T+89T2 |
| 97 | 1−2.87T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.234993594825525624364079927886, −8.604785510102191739950001517031, −7.37885169349480101593700280084, −6.62592425445843005796650472799, −6.10449477130991014213560895993, −4.76559855400695039982176234287, −4.19853072230293320891625549958, −3.25083143224501669743669053700, −2.61819624975453197322453712648, −0.73047933133623116124195629582,
0.73047933133623116124195629582, 2.61819624975453197322453712648, 3.25083143224501669743669053700, 4.19853072230293320891625549958, 4.76559855400695039982176234287, 6.10449477130991014213560895993, 6.62592425445843005796650472799, 7.37885169349480101593700280084, 8.604785510102191739950001517031, 9.234993594825525624364079927886