Properties

Label 2-2175-1.1-c1-0-14
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.510·2-s + 3-s − 1.73·4-s + 0.510·6-s − 4.82·7-s − 1.90·8-s + 9-s + 4.88·11-s − 1.73·12-s − 4.59·13-s − 2.46·14-s + 2.50·16-s − 6.50·17-s + 0.510·18-s + 3.09·19-s − 4.82·21-s + 2.49·22-s + 5.62·23-s − 1.90·24-s − 2.34·26-s + 27-s + 8.38·28-s + 29-s + 9.24·31-s + 5.09·32-s + 4.88·33-s − 3.32·34-s + ⋯
L(s)  = 1  + 0.361·2-s + 0.577·3-s − 0.869·4-s + 0.208·6-s − 1.82·7-s − 0.675·8-s + 0.333·9-s + 1.47·11-s − 0.502·12-s − 1.27·13-s − 0.658·14-s + 0.625·16-s − 1.57·17-s + 0.120·18-s + 0.709·19-s − 1.05·21-s + 0.531·22-s + 1.17·23-s − 0.389·24-s − 0.460·26-s + 0.192·27-s + 1.58·28-s + 0.185·29-s + 1.66·31-s + 0.901·32-s + 0.850·33-s − 0.570·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.505092121\)
\(L(\frac12)\) \(\approx\) \(1.505092121\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - 0.510T + 2T^{2} \)
7 \( 1 + 4.82T + 7T^{2} \)
11 \( 1 - 4.88T + 11T^{2} \)
13 \( 1 + 4.59T + 13T^{2} \)
17 \( 1 + 6.50T + 17T^{2} \)
19 \( 1 - 3.09T + 19T^{2} \)
23 \( 1 - 5.62T + 23T^{2} \)
31 \( 1 - 9.24T + 31T^{2} \)
37 \( 1 - 11.1T + 37T^{2} \)
41 \( 1 + 2.84T + 41T^{2} \)
43 \( 1 - 4.58T + 43T^{2} \)
47 \( 1 + 3.62T + 47T^{2} \)
53 \( 1 - 0.967T + 53T^{2} \)
59 \( 1 + 0.298T + 59T^{2} \)
61 \( 1 + 0.786T + 61T^{2} \)
67 \( 1 + 4.86T + 67T^{2} \)
71 \( 1 - 0.741T + 71T^{2} \)
73 \( 1 + 5.52T + 73T^{2} \)
79 \( 1 + 2.96T + 79T^{2} \)
83 \( 1 - 13.6T + 83T^{2} \)
89 \( 1 - 3.67T + 89T^{2} \)
97 \( 1 - 2.87T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.234993594825525624364079927886, −8.604785510102191739950001517031, −7.37885169349480101593700280084, −6.62592425445843005796650472799, −6.10449477130991014213560895993, −4.76559855400695039982176234287, −4.19853072230293320891625549958, −3.25083143224501669743669053700, −2.61819624975453197322453712648, −0.73047933133623116124195629582, 0.73047933133623116124195629582, 2.61819624975453197322453712648, 3.25083143224501669743669053700, 4.19853072230293320891625549958, 4.76559855400695039982176234287, 6.10449477130991014213560895993, 6.62592425445843005796650472799, 7.37885169349480101593700280084, 8.604785510102191739950001517031, 9.234993594825525624364079927886

Graph of the $Z$-function along the critical line