L(s) = 1 | + (−0.5 − 0.866i)5-s + (2.5 − 4.33i)11-s − 3·17-s − 5·19-s + (−3 − 5.19i)23-s + (−0.499 + 0.866i)25-s + (−5 + 8.66i)29-s + (−1 − 1.73i)31-s + 4·37-s + (−1.5 − 2.59i)41-s + (1.5 − 2.59i)43-s + (−2 + 3.46i)47-s + (3.5 + 6.06i)49-s + 6·53-s − 5·55-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (0.753 − 1.30i)11-s − 0.727·17-s − 1.14·19-s + (−0.625 − 1.08i)23-s + (−0.0999 + 0.173i)25-s + (−0.928 + 1.60i)29-s + (−0.179 − 0.311i)31-s + 0.657·37-s + (−0.234 − 0.405i)41-s + (0.228 − 0.396i)43-s + (−0.291 + 0.505i)47-s + (0.5 + 0.866i)49-s + 0.824·53-s − 0.674·55-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.939+0.342i)Λ(2−s)
Λ(s)=(=(2160s/2ΓC(s+1/2)L(s)(−0.939+0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.939+0.342i
|
Analytic conductor: |
17.2476 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(721,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1/2), −0.939+0.342i)
|
Particular Values
L(1) |
≈ |
0.6436018044 |
L(21) |
≈ |
0.6436018044 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
good | 7 | 1+(−3.5−6.06i)T2 |
| 11 | 1+(−2.5+4.33i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−6.5+11.2i)T2 |
| 17 | 1+3T+17T2 |
| 19 | 1+5T+19T2 |
| 23 | 1+(3+5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+(5−8.66i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1+1.73i)T+(−15.5+26.8i)T2 |
| 37 | 1−4T+37T2 |
| 41 | 1+(1.5+2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−1.5+2.59i)T+(−21.5−37.2i)T2 |
| 47 | 1+(2−3.46i)T+(−23.5−40.7i)T2 |
| 53 | 1−6T+53T2 |
| 59 | 1+(−1.5−2.59i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1−1.73i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5.5+9.52i)T+(−33.5+58.0i)T2 |
| 71 | 1+14T+71T2 |
| 73 | 1+15T+73T2 |
| 79 | 1+(−5+8.66i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−6+10.3i)T+(−41.5−71.8i)T2 |
| 89 | 1+14T+89T2 |
| 97 | 1+(−6.5+11.2i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.940403965776297884536880497636, −8.114780567337784726864762637992, −7.14998900217653976309035900039, −6.28680717671166035417709363644, −5.70733891978350759841606202092, −4.51604435548213052849703621204, −3.91767374355500027577096924479, −2.84072250887378718078314778442, −1.59168597887098548294120467714, −0.21552206557671963973280089429,
1.69561167442075605649894026703, 2.53432958240295813330293143094, 3.98978339108529072480769504268, 4.26989429313363851772515879910, 5.52730855089390466044360912338, 6.42215607730218376178347788465, 7.06717807493524218520804241978, 7.78766142118267506199257065619, 8.655241520453248167470365463302, 9.527254866038541719902160716674