Properties

Label 2-2160-9.5-c2-0-38
Degree 22
Conductor 21602160
Sign 0.342+0.939i-0.342 + 0.939i
Analytic cond. 58.855758.8557
Root an. cond. 7.671747.67174
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.93 − 1.11i)5-s + (−5.87 − 10.1i)7-s + (13.1 − 7.57i)11-s + (8.87 − 15.3i)13-s + 15.1i·17-s + 11.2·19-s + (29.2 + 16.8i)23-s + (2.5 + 4.33i)25-s + (−8.23 + 4.75i)29-s + (28.1 − 48.6i)31-s + 26.2i·35-s + 14·37-s + (22.5 + 12.9i)41-s + (−9.99 − 17.3i)43-s + (62.6 − 36.1i)47-s + ⋯
L(s)  = 1  + (−0.387 − 0.223i)5-s + (−0.838 − 1.45i)7-s + (1.19 − 0.688i)11-s + (0.682 − 1.18i)13-s + 0.891i·17-s + 0.592·19-s + (1.27 + 0.733i)23-s + (0.100 + 0.173i)25-s + (−0.284 + 0.164i)29-s + (0.906 − 1.57i)31-s + 0.750i·35-s + 0.378·37-s + (0.548 + 0.316i)41-s + (−0.232 − 0.402i)43-s + (1.33 − 0.769i)47-s + ⋯

Functional equation

Λ(s)=(2160s/2ΓC(s)L(s)=((0.342+0.939i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.342 + 0.939i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(2160s/2ΓC(s+1)L(s)=((0.342+0.939i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 21602160    =    243352^{4} \cdot 3^{3} \cdot 5
Sign: 0.342+0.939i-0.342 + 0.939i
Analytic conductor: 58.855758.8557
Root analytic conductor: 7.671747.67174
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ2160(881,)\chi_{2160} (881, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2160, ( :1), 0.342+0.939i)(2,\ 2160,\ (\ :1),\ -0.342 + 0.939i)

Particular Values

L(32)L(\frac{3}{2}) \approx 1.9117840371.911784037
L(12)L(\frac12) \approx 1.9117840371.911784037
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+(1.93+1.11i)T 1 + (1.93 + 1.11i)T
good7 1+(5.87+10.1i)T+(24.5+42.4i)T2 1 + (5.87 + 10.1i)T + (-24.5 + 42.4i)T^{2}
11 1+(13.1+7.57i)T+(60.5104.i)T2 1 + (-13.1 + 7.57i)T + (60.5 - 104. i)T^{2}
13 1+(8.87+15.3i)T+(84.5146.i)T2 1 + (-8.87 + 15.3i)T + (-84.5 - 146. i)T^{2}
17 115.1iT289T2 1 - 15.1iT - 289T^{2}
19 111.2T+361T2 1 - 11.2T + 361T^{2}
23 1+(29.216.8i)T+(264.5+458.i)T2 1 + (-29.2 - 16.8i)T + (264.5 + 458. i)T^{2}
29 1+(8.234.75i)T+(420.5728.i)T2 1 + (8.23 - 4.75i)T + (420.5 - 728. i)T^{2}
31 1+(28.1+48.6i)T+(480.5832.i)T2 1 + (-28.1 + 48.6i)T + (-480.5 - 832. i)T^{2}
37 114T+1.36e3T2 1 - 14T + 1.36e3T^{2}
41 1+(22.512.9i)T+(840.5+1.45e3i)T2 1 + (-22.5 - 12.9i)T + (840.5 + 1.45e3i)T^{2}
43 1+(9.99+17.3i)T+(924.5+1.60e3i)T2 1 + (9.99 + 17.3i)T + (-924.5 + 1.60e3i)T^{2}
47 1+(62.6+36.1i)T+(1.10e31.91e3i)T2 1 + (-62.6 + 36.1i)T + (1.10e3 - 1.91e3i)T^{2}
53 137.6iT2.80e3T2 1 - 37.6iT - 2.80e3T^{2}
59 1+(55.1+31.8i)T+(1.74e3+3.01e3i)T2 1 + (55.1 + 31.8i)T + (1.74e3 + 3.01e3i)T^{2}
61 1+(0.618+1.07i)T+(1.86e3+3.22e3i)T2 1 + (0.618 + 1.07i)T + (-1.86e3 + 3.22e3i)T^{2}
67 1+(42.9+74.4i)T+(2.24e33.88e3i)T2 1 + (-42.9 + 74.4i)T + (-2.24e3 - 3.88e3i)T^{2}
71 122.1iT5.04e3T2 1 - 22.1iT - 5.04e3T^{2}
73 1+60.2T+5.32e3T2 1 + 60.2T + 5.32e3T^{2}
79 1+(51.689.4i)T+(3.12e3+5.40e3i)T2 1 + (-51.6 - 89.4i)T + (-3.12e3 + 5.40e3i)T^{2}
83 1+(7845.0i)T+(3.44e35.96e3i)T2 1 + (78 - 45.0i)T + (3.44e3 - 5.96e3i)T^{2}
89 1+12.0iT7.92e3T2 1 + 12.0iT - 7.92e3T^{2}
97 1+(49.8+86.3i)T+(4.70e3+8.14e3i)T2 1 + (49.8 + 86.3i)T + (-4.70e3 + 8.14e3i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.642891298667950451470598136360, −7.80905166839430325862377247309, −7.16979348368167677186954834400, −6.29994376629366258866840677016, −5.66108020847162495790946867432, −4.32392219935286735565107297109, −3.68675188433559511462929770764, −3.11702518747926252298455180037, −1.18156326639398668372176884846, −0.60777361732385959559167709955, 1.17707553305712283958066325555, 2.46351873647662955124014954851, 3.22910799283999924091780783616, 4.26676860046853419802175643567, 5.10938578662391252640132466635, 6.23815531205974755219894868323, 6.66583538966855005041215071839, 7.40579587854973827090713999654, 8.731117279391778808029654904573, 9.070987516444723734152399590674

Graph of the ZZ-function along the critical line